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ABSTRACT 

In the 1976, the Institute of Transportation Engineers (ITE) compiled their first 

Handbook of guidelines and methods for evaluating development-level transportation 

impacts, specifically vehicular impacts (Institute of Transportation Engineers 1976). 

Decades later, these methods—essentially the same as when they were originally 

conceived—are used ubiquitously across the US and Canada. Only recently, with the 

guidelines in its third edition of the ITE’s Trip Generation Handbook (Institute of 

Transportation Engineers 2014) new data and approaches been adopted—despite 

substantial evidence that questions the accuracy of older data (Clifton, Currans, and Muhs 

2012; Shafizadeh et al. 2012; Weinberger et al. 2015), automobile bias (Clifton et al. 

2012; Millard-Ball 2015; Manville 2017), and lack of sensitivity to urban contexts 

(Currans and Clifton 2015; Ewing et al. 2011; Schneider, Shafizadeh, and Handy 2015; 

Weinberger et al. 2015).  

This dissertation contributes to this literature by focusing on the data, methods, 

and assumptions so commonly included in development- or site-level evaluation of 

transportation impacts. These methods are omnipresent in development-level review—

used in transportation impact analyses or studies (TIAs/TISs) of vehicular or mode-based 

impacts, vehicle miles traveled (VMT) and estimates of emissions, scaling or scoping 

development size, and evaluating transportation system development, impact or utility 

fees or charges. However, few have evaluated the underlying characteristics of these 

foundational data—with few exceptions (Shoup 2003)—this manuscript takes aim at 



 

 

 

understanding inherent issues in the collection and application of ITE’s data and methods 

in various urban contexts. 

This manuscript includes a compiled dissertation, four papers written 

consecutively. The first, evaluates state-of-the-art methods in Chapter 2—identifying 

gaps in the literature. Two such gaps are explored in Chapter 3 and Chapter 4. In Chapter 

3, a larger implicit assumption present in ITE’s methods—that the existing land-use 

taxonomy is an optimal and accurate way to describe land use and segment data. Results 

indicate a simplified taxonomy would provide substantial reductions in cost 

corresponding with a minor loss in the model’s explanation of variance. Following, 

Chapter 4 explores a common assumption that requires ITE’s vehicle trips be converted 

into person trips and applied across contexts. The results point to the need to consider 

demographics in site-level transportation impact analysis, particularly to estimate overall 

demand (person trips, transaction activity) at retail and service development.  

In Chapter 5, the findings from this research and previous studies are extrapolated 

to evaluate and quantify the potential bias when temporal, special, and social contexts are 

ignored. The results indicate the compounding overestimation of automobile demand 

may inflate estimation by more than 100% in contexts where ITE should be applicable 

(suburban areas with moderate incomes). In the conclusions (Chapter 6), the implications 

of this work are explored, followed by recommendations for practice and a discussion of 

the limitations of this research and future work. 
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CHAPTER 1 INTRODUCTION 

In 1976, the Institute of Transportation Engineers (ITE) compiled their first 

Handbook of guidelines and methods for evaluating development-level transportation 

impacts, specifically vehicular impacts (Institute of Transportation Engineers 1976). With 

the growing expansion of suburban development, the purpose of this report was to 

provide practitioners with an off-the-shelf evidentiary database for understanding and 

evaluating vehicular impacts. Engineers and planners use this information to estimate the 

effects of development, evaluate these impacts against a standardized metric regulated by 

the local agency (e.g., level-of-service), and recommend mitigations necessary to 

maintain service and share the burden of development between the agency and developer. 

Decades later, these methods—essentially the same as when they were originally 

conceived—are used ubiquitously across the US and Canada. Only recently, with the 

guidelines in its third edition of the ITE’s Trip Generation Handbook (Institute of 

Transportation Engineers 2014) have new data and approaches been adopted—despite 

substantial evidence that questions the accuracy of older data (Clifton, Currans, and Muhs 

2012; Shafizadeh et al. 2012; Weinberger et al. 2015), automobile bias (Clifton et al. 

2012; Millard-Ball 2015; Manville 2017), and lack of sensitivity to urban contexts 

(Currans and Clifton 2015; Ewing et al. 2011; Schneider, Shafizadeh, and Handy 2015; 

Weinberger et al. 2015). The corresponding ITE Trip Generation Manual, a supplement 

to the Handbook, continues to contain the nearly all the original suburban vehicle trip 

generation data collected since its creation (Institute of Transportation Engineers 2012). 



 

 

 

Because one cannot be used without the other, this manuscript refers to the ITE Trip 

Generation Handbook (methods) and the Trip Generation Manual (data) as one in the 

same: the Handbook. 

This dissertation contributes to this literature by focusing on the data, methods, 

and assumptions so commonly included in development- or site-level evaluation of 

transportation impacts. These methods are omnipresent in development-level review—

used in transportation impact analyses or studies (TIAs/TISs) of vehicular or mode-based 

impacts, vehicle miles traveled (VMT) and estimates of emissions, scaling or scoping 

development size, and evaluating transportation system development, impact or utility 

fees or charges. Few have evaluated the underlying characteristics of these foundational 

data—with few exceptions (Shoup 2003)—this manuscript takes aim at understanding 

inherent issues in the collection and application of ITE’s data and methods in various 

urban contexts. 

The main objective and contribution of this work is connecting practice with the 

deep and broad travel behavior literature. For many decades, the basic practice of 

development-level trip generation estimation has remained stagnant, despite a growing 

body of demand-estimation research. These data are primarily used to evaluate and share 

the transportation impacts of new development between the local agency and the 

developer (e.g., charges or fees incurred, transportation facility mitigations required). By 

investigating these data—and their corresponding bias, inaccuracies, precision, and 

error—through the lens of theories and prior research, I may develop a stronger 



 

 

 

foundation and guidance for improved methods and data that lead to more accurate 

methods and a more fair system. 

This research builds on my experiences on several research projects focusing on 

trip generation data and methods, including: evaluating the influences of the built 

environment (Clifton, Currans, and Muhs 2012; Currans 2013), exploring error in 

existing methods through observation (Clifton et al. 2017), incorporating innovative 

approaches into practice (Clifton and Currans 2015), and two on-going projects exploring 

the variation of trip generation at subsidized affordable housing1 and new housing 

products (e.g., micro-apartments, zero-parking housing)2. Ideas and inspiration were also 

developed through the author’s service panels and committees, including the ITE Expert 

Panel on Urban Trip Generation, Committee to revise the 3rd Edition ITE’s Handbook, 

and five different project panel committees.  

The remainder of this introduction provides an overview of this compilation 

dissertation which includes four articles, followed by a concluding chapter. 

Chapter 2 describes an overview of applications of development-level 

transportation impact estimation, a review of the state-of-the-art methods, a critique of 

these methods, and an outline of the overall direction of recent studies. From this 

investigation, several themes were identified and defined, revealing and outlining gaps 

                                                 

1 Project funded by Caltrans and led by Dr. Kelly J. Clifton, Portland State University. 

2 Project funded by the National Institute of Transportation and Communities and led by Dr. Kelly 

J. Clifton, Portland State University. 



 

 

 

that need further study. While approaches in this field are inherently trying to capture 

demand, few methods consider the people making the trips: demographics, access to 

opportunities, overall demand for activities and the corresponding behavioral patterns. 

Among gaps identified, there remains a heavy reliance on the ubiquitously-available 

Handbook. It is from these gaps identified that the following three chapters were derived. 

Chapter 3 examines a larger implicit assumption present in ITE’s methods—that 

the existing land-use taxonomy is an optimal and accurate way to describe land use and 

segment data. In this chapter, ITE's vehicle-trip rates for retail and services are explored. 

Two analyses were conducted to examine: (a) the relationship between the age of the data 

and vehicle-trip rates—an often-contested topic that has resulted in little change in 

practice; and (b) quantifying the contribution of ITE’s land-use taxonomy to explaining 

of variation in trip rates. The combination of these two analyses suggest that vehicle-trip 

rates have declined over time—although the lack of transparency of ITE’s data (e.g., 

location information and context) limits the ability to understand whether this was due to 

shifts in behavior or changes in data collection protocols. An aggregated taxonomy is 

developed using only the data from the previous 10 years—reducing 32 retail and service 

land-use categories to 3. The results indicate that segmenting retail and service land uses 

by three categories (heavy goods, convenience uses, and everything else) performed 

nearly as well as the ITE’s more extensive taxonomy currently. The costs of ITE’s 

extensive taxonomy are explored further. If a complete data set with a sample size of 10 

observations were to be maintained—using the full taxonomy considered for data of all 

ages, 67 categories—it would cost approximately $5.3-6.7 million US dollars in data 



 

 

 

collection every 10 years. And this is a conservative estimate that considers only retail 

and service uses (a fraction of the more than 170 categories). This number does not yet 

account for the need to capture a wider variety of urban contexts. Recommendations for 

practice are explored in the discussion and conclusions. 

Chapter 4 explores a major assumption applied in the use of ITE’s data. Nine out 

of 13 of the innovative methods reviewed in Chapter 2 rely upon ITE’s data as a 

“baseline” or foundation for estimating demand access urban contexts. This process relies 

on a major assumption that (converted) person-trip counts estimated for suburban 

contexts would apply in more urban areas. This assumption is inconsistent with theories 

of urban economics—most notably bid-rent theory—which recognize that businesses pay 

a premium to locate in areas with high levels of accessibility to attract more customers. In 

addition, most transportation impact analyses have ignored income effects, even though 

socio-economics are a proven driver of activity levels in retail locations.  

In this chapter, the performance of this conversion protocol itself is explored, 

comparing observed and estimated (converted) person-trip rates. The results indicate 

substantial error in four land-use categories (office, residential, retail, and service). For 

retail and services, however, this error was considerably biased toward underestimating 

activity (person trips). Then, transaction counts for 93 grocery and convenience markets 

in Portland, Oregon were examined to explore the relationship between local and regional 

accessibility and median income levels with overall activity levels (transaction counts). In 

a multilevel negative binomial regression, the accessibility and income were regressed 

upon weekly, daily, and peak-hour transaction rates. While there was not enough 



 

 

 

evidence to suggest a significant relationship between accessibility and transaction rates, 

the results did indicate a significant relationship with median income of the surrounding 

area. The implications point to the need to consider demographics in site-level 

transportation impact analysis. The conclusions also provide a discussion about the use of 

alternative forms of data in transportation impact analyses—such as, transaction as a 

proxy for person-trip rates. 

Because so many of the existing methods rely on ITE’s Handbook, Chapter 5 

explores these foundational data upon which so many innovative and conventional 

approaches rely—the methods and data collection protocols from the ITE’s Handbook 

(2014) and Manual (2012). In this chapter, I explore the derivation and initial context in 

ITE’s data, to the furthest extent possible. While several previous studies question the 

accuracy of these data (Weinberger et al. 2015; Shafizadeh et al. 2012; Millard-Ball 

2015), this chapter explores the underlying temporal, spatial, and social contexts of ITE’s 

data. The results indicate the compounding overestimation of automobile demand may 

inflate estimation by 100% or more in contexts where ITE should be applicable 

(suburban areas with moderate incomes). A discussion about the land-use development 

implications of this inflation in practice is explored. 

This dissertation begins by evaluating state-of-the-art methods in Chapter 2 and 

identifying gaps in the literature. Two such gaps are explored in Chapter 3 and Chapter 4. 

In Chapter 5, the findings from this research and previous studies are extrapolated to 

evaluate and quantify the potential bias when temporal, special, and social contexts are 

ignored. In the conclusions (Chapter 6), the implications of this work as a whole are 



 

 

 

explored, followed by recommendations for practice and a discussion of the limitations of 

this research and future work. 

Many of the ideas and concepts tested and discussed in this dissertation were 

identified with or by the Chair of the dissertation committee, Dr. Kelly J. Clifton. 

Because of this collaborative background, contributions from both myself (Currans) and 

the Chair (Clifton) are quantified and described for each chapter in Table 1-1.  

Table 1-1 Author’s Contribution to Each Chapter 

Chapter Currans Clifton Description 
2 95% 5% I contributed 100% to the conception, analysis, interpretation, and 

writing of this paper—originally written as the appendix of the 
dissertation proposal. However, Dr. Clifton contributed through 
discussion and encouraged me to develop it into a paper for 
publication. 

3 95% 5% I contributed 100% to conception, analysis, interpretation, and 
writing of this paper. However, Dr. Clifton contributed through 
discussion and conversation on the multiple related projects I have 
participated in. She also encouraged me to explore the 
compounding influences of the error and bias in these data—a 
factor I explored while working on a related project with Dr. 
Clifton, but had not considered incorporating into this manuscript. 

4 95% 5% While I contributed the majority of the conception of this study, Dr. 
Clifton contributed between 10-20%. I contributed 100% of the 
analysis, interpretation, and writing of this paper.  

5 85% 15% The conception of this paper—or rather the need to review this 
specific ubiquitous and pernicious assumption—was derived by Dr. 
Clifton. She also the first, to my knowledge, to association this 
assumption to conflicts with urban spatial structure theories 
(Clifton, Currans, and Muhs 2012). Perhaps a small contribution in 
terms of time, but large in impact. It was only later in my work with 
this question that I realized the potential extent of error—or more 
importantly, the bias—from which this chapter was 
formed. Because of this, I credit Dr. Clifton with approximately 
50% of the conception of this paper. My 50% was spent formulating 
the research design, purpose, and impacts and developing the 
concept for the research question itself. I contributed 100% of the 
analysis, interpretation, and writing of this paper. 

 

  



 

 

 

CHAPTER 2 ISSUES IN TRIP GENERATION METHODS FOR 

TRANSPORTATION IMPACT ESTIMATION OF LAND-USE DEVELOPMENT: 

A REVIEW AND DISCUSSION OF THE STATE-OF-THE-ART APPROACHES 

First published in the Journal of Planning Literature (2017). 

DOI: 10.1177/0885412217706505 

Introduction 

The Institute of Transportation Engineers (ITE) Trip Generation Handbook  

(Institute of Transportation Engineers 2014) and the corresponding Manual (Institute of 

Transportation Engineers 2012) are the predominant resources for estimating 

transportation impacts generated by new development in the United States. Over the past 

15 years, a substantial amount of research has been published evaluating the ability for 

current state-of-the-practice methods, namely ITE’s Trip Generation Handbook, to more 

accurately predict multimodal traffic impacts in urban areas, such as (Bochner et al. 

2011; Clifton, Currans, and Muhs 2013; Daisa and Parker 2009). While the Handbook 

has remained a resource of “guidance” (Institute of Transportation Engineers 2014)—

recommending analysts collect their own data where the context of the site does not 

reflect typical ITE locations: suburban, single-use, vehicle-oriented development with 

unconstrained parking—but constrained budgets for both agencies and practitioners have 

caused a call for more urban data and methods (Bochner et al. 2016). In response, the 

most recent edition of the Handbook (Institute of Transportation Engineers 2014) has 

begun to incorporate the vast number of studies aimed at improving the collection of 

multimodal data and the estimation of multimodal impacts at new developments in urban 



 

 

 

areas, such as (Clifton, Currans, and Muhs 2015; Shafizadeh et al. 2012; Ewing et al. 

2011; Daisa et al. 2013). However, the existing state-of-the-art methods do not control for 

a number of important aspects, that are outlined in our manuscript. 

While others have evaluated the error in prediction of these methods (Sandag 

2010; Shafizadeh et al. 2012; Millard-Ball 2015; Shoup 2003), discussion about evolving 

data collection for urban, multimodal contexts (Clifton, Currans, and Muhs 2013; 

Schneider, Shafizadeh, and Handy 2015; Weinberger et al. 2015), and how these methods 

are implemented in practice (Bochner et al. 2011; Clifton, Currans, and Muhs 2012), the 

focus of this manuscript is aimed at reviewing these methods and others for consistency 

with theories of travel behavior and urban economics, of which the literature is both far 

reaching and plentiful, but rarely framed around transportation impact analyses.  

To identify methods, multiple Google Scholar and library searches were used to 

identify a list of studies and methods aimed at improving trip generation estimation for 

transportation impact analyses (TIA) or studies (TIS). Phrases including “trip generation” 

and “transportation/traffic impacts analysis/studies” were used to identify a first cut list of 

methods. Methods that were not (a) developed using data collected in the United States 

(US) (b) within the past 15 years and (c) published within a peer review process (journal 

article or published institutional reports at the time this review was completed) were 

excluded.  

In an effort to remain concise, the focus of this manuscript remains directed 

toward the state-of-the-art methods for trip generation estimation, particularly for urban 

contexts. Description of state-of-the-practice can be found in the ITE Trip Generation 



 

 

 

Handbook, which is now in its third edition (2014). The following subsection provides 

context for the applications of trip generation data. An overview of the general state-of-

the-art methods for estimation of urban-centric transportation impacts is provided, 

including a table describing the methods evaluated in this study (see Table 2-1 through 

Table 2-3). This manuscript ends with a longer discussion section focusing on comparing 

these methods for consistencies with travel behavior and economic theories, and 

conclusions for moving forward. 

Applications of Trip Generation Data & Methods 

The question of how to properly estimate the multimodal transportation impacts 

of urban development is more pressing as urban areas struggle with the challenge of 

creating sustainable futures, supporting multimodal development, and reducing 

greenhouse gas emissions from the transportation sector given ever-constrained public 

resources. And as performance measures evolve, so must the data (Governor’s Office of 

Planning and Research 2016). Because the current methods for estimating transportation 

impacts rely on these existing methods that have been shown to have varying 

applicability and accuracy in urban areas (Shafizadeh et al. 2012; Millard-Ball 2015; 

Weinberger et al. 2015), the implications trickle down into many different components of 

engineering and planning for new development, including site design, traffic impacts, 

system development charges, impact fees, emissions estimates, and sometimes regional 

travel-demand modeling.  

The use of trip generation data has a broad set of applications in transportation 

engineering and planning. The first, and most well-known application, is the use of trip 



 

 

 

generation data in TIA. Trip generation data refers to the counts of people entering and 

exiting a site. As with many studies of trip generation data, this manuscript will refer to 

trip “ends” as trip counts interchangeably. Trip generation data are used to estimate the 

relevant demand of new development or re-development, estimating “new trips” derived 

from new development, and providing an estimate of total impact that allows for an 

assessment of future travel at the site for the year of build-out relative to area-wide rates 

of growth (which are also sometimes estimated using trip generation rates (McRae, 

Bloomberg, and Muldoon 2006)). Many agencies in the US rely on ITE’s approach as a 

defensible method for assessing the impacts of new development (Clifton, Currans, and 

Muhs 2015; Bochner et al. 2011). 

Trip generation rates are also used as a proxy to estimate whether or not the 

developer needs to conduct a full TIA (Clifton, Currans, and Muhs 2012). If a new 

development is estimated to produce more than the threshold number of vehicle trips, as 

outlined by a given agency, the process triggers a TIA to review the relevant impacts of 

the new development. The thresholds that trigger TIA are often arbitrarily chosen—

occasionally specified differently for districts throughout the city. For most agencies, 

only vehicle-oriented triggers are used. Some have suggested the use of non-motorized- 

or transit-based triggers that may encourage more thorough multimodal development 

review, particularly in evaluating the safety of non-motorized modes of travel 

surrounding the development (Ridgway and Tabibnia 1999). 

Although the original intent of creating a compilation of trip generation was for 

use in traffic impact analyses, it is far from the only application of these data. As such, 



 

 

 

the implications of imprecision, inaccuracy, and inappropriate applications extends far 

beyond site-level traffic mitigations. Vehicle trip generation rates have also been used to 

estimate system development or impact fees—to accommodate improvements in network 

capacity or service—and transportation utility fees—to account for costs of operation and 

maintenance. While practices in applying impact and utility fees vary, these 

transportation charges are often applied on a “per trip basis” which are estimated based 

on ITE’s data and methods, e.g. (Junge and Levinson 2012).  

And while these data are occasionally used within four-step travel-demand 

models to produce attraction trip generation rates—specifically for special generators or 

where there exists limited household travel survey data—they have been more recently 

incorporated in models estimating emissions of development in California. The 

CalEEMod model estimates greenhouse gas emissions for personal vehicle travel at new 

developments using a combination of ITE trip generation rates and locally derived trip 

length distributions (ENVIRON International Corporation and the California Air Districts 

2013), allowing users to evaluate greenhouse gases through vehicle miles traveled to 

satisfy Senate Bill 743 on Environmental Quality.  

Urban Estimation: A Paradigm Shift 

As researchers and agencies become more interested in improving traffic impact 

analyses for their regions, there has been a shift in the type of trip generation data 

collected. Alternative trip generation sources include person-trip rates, mode shares (and 

mode-specific count estimates), contextual information (e.g., density, diversity, design, 

multimodal facilities, parking, socio-demographics), site information in addition to the 



 

 

 

“size” of the development (e.g., the cost of dwelling units, bike parking, year built, 

transportation demand management (TDM) strategies). Moreover, as more agencies are 

the drivers of funding data collection and method revision research, some are also 

requiring that as much of the site-level information be both free and readily available for 

researchers, developers, and practitioners. 

Multimodal trip counts cannot always be easily collected using observation or 

passive data collection—such as cordon counts. The state-of-the-practice for collecting 

multimodal trip counts relies on both person counts entering and exiting the site to 

establish an overall person-trip rate, and a visitor intercept survey to calculate a 

multimodal mode share and an automobile occupancy rate. The combination of the 

person-trip rate, mode share, and automobile occupancy rate provides an estimate of 

multimodal person-trip counts and rates (e.g., person trips by car, bike, walk, transit, and 

vehicle trips). Additional information is sometimes collected but not always provided 

along with the cleaned data; this data may include on-street or off-street automobile/bike 

parking of visitors, trip length, trip purpose, demographics (age, gender, or income), 

group size, frequency of site visit, and frequency of mode used (Clifton, Currans, and 

Muhs 2013). 

Although the procedures from person trip generation data collection are far from 

widely adopted by agencies across the United States, ITE’s Handbook has adopted some 

of the suggestions for guidance based on a few papers derived from recent research with 

common features. ITE’s most recent addition of the Handbook included methods to 

collect multimodal person-based trip generation for infill development—single land uses 



 

 

 

developed on unused or vacant land within urban areas that are already mostly developed 

(Institute of Transportation Engineers 2014)–and are planning increased updates later this 

year (Bochner et al. 2016). The data collection methods adopted reflected the input of 

authors of several recent papers and data collections. These revised guidelines do not 

recommend a unified method to account for differences in urban behavior, but rather 

introduce multimodal assessment using a wide range of approaches, each with its own 

limitations and constraints. 

There are 13 methods available (per my review standards stated in the 

introduction) and tested to predict urban vehicle trip generation impacts. To simplify the 

discussion, the following cited methods have been labeled in no particular order by 

letters. The characteristics of each method are described in Table 2-1 through Table 2-3. 

The methods discussed in this paper, with their corresponding reference letter, include: 

A. Urban Context Adjustment (Clifton, Currans, and Muhs 2015)  
B. Smart Growth Trip Generation Adjustment (Schneider, Shafizadeh, and 

Handy 2015)  
C. Household Travel Survey Urban Context Adjustment (Currans and Clifton 

2015); based on (Clifton et al. 2012) 
D. Report 758, National Cooperative Highway Research Program (NCHRP) 

(Daisa et al. 2013)  
E. Report 684, NCHRP (Bochner et al. 2011), an updated version of the 

ITE’s Multiuse Method (Institute of Transportation Engineers 2004)  not 
discussed here 

F. Environmental Protection Agency, MXD (Ewing et al. 2011); based on  
(Ewing, Dumbaugh, and Brown 2001) 

G. MXD + (Walters, Bochner, and Ewing 2013)   
H. Report 128, Transit Cooperative Research Program (TCRP) (Cervero and 

Arrington 2008)  
I. URBEMIS (Nelson/Nygaard 2005)  
J. CalEEMod (ENVIRON International Corporation and the California Air 

Districts 2013)  



 

 

 

K. San Francisco Traffic Impact Guidelines (The Planning Department: City 
and County of San Francisco 2002)  

L. New York City (NYC) Transportation Guidelines (New York City 2014) 
M. Washington, DC, Department of Transportation (DDOT) (Ewing et al. 

2017)  

To the author’s knowledge, there are also currently nine large research projects in 

progress across the US designed with the intent to improve our understanding of how 

transportation impacts vary in transit-oriented development,3 smart growth areas,4 areas 

that allow no new parking to be included in new development,5 developing more locally 

sensitive rates,6 affordable housing with transportation demand management strategies,7 

as well as one focusing on how to identify which method is best suited for different 

environments.8 

                                                 

3 Two projects funded by the National Institute for Transportation and Communities (NITC), led 

by Reid Ewing from the University of Utah; and Air Resource Board, led by Maggie Witt 

4 Projects funded by the California Department of Transportation (Caltrans), led by Brian Bochner 

of the Texas A&M Transportation Institute (TTI). 

5 Project funded by the National Institute for Transportation and Communities (NITC), led by 

Kelly J. Clifton of Portland State University. 

6 Two projects funded by: New York City, and San Francisco. 

7 Two projects funded by: Caltrans, led by Kelly J. Clifton of Portland State University; and City 

of Los Angeles, led by David Somers. 

8 Project funded by the Virginia Department of Transportation (VDOT), led by Ilona Kastenhofer 

of VDOT. 



 

 

 

While most of these studies have collected or will collect urban trip generation, 

there remain only three methods that directly estimates person trips. While a few methods 

utilize household travel survey data, organized in a format that allows for parity with 

more traditional methods, for most methods, there exist too few person counts for any 

one land use to estimate multimodal impacts directly from establishment level studies and 

control for the various aspects of new development believed to influence transportation 

impacts (such as the built environment, sociodemographics, etc.). As it stands, most 

existing methods that account for any of these issues are adjustments—modifying ITE’s 

suburban, vehicle-oriented data and methods, most often to correct for relative measures 

of the built environment.  

The most common way to estimate person-trip rates is to indirectly adjust ITE’s 

Trip Generation Handbook vehicle trip generation rates based on assumed mode share 

and vehicle occupancy rates for ITE’s study sites. This adjustment method considers 

ITE’s Handbook study sites, and assumes an automobile mode share and a vehicle 

occupancy rate for these ITE-type locations. The range of assumed automobile mode 

share rates varies by land uses, but is generally considered between 95- and 100% of 

automobile uses based on the vehicle-oriented, suburban, single-use establishment 

descriptions within the Handbook. Transit use was not collected very often in ITE’s 

baseline sites, but occasionally it was recorded and can be used to adjust these 

assumptions. Vehicle occupancy rates were reported for only a select few land uses, but 

can be used to refine the general assumption of vehicle occupancy rates between 1.0 to 

1.2 persons per vehicle. The ITE vehicle trip estimation is then adjusted using these 



 

 

 

assumed rates to derive a person trip estimate (see Equation 2-1 for the mathematical 

form of this description).  

Equation 2-1 Adjusting ITE Vehicle-trip rates into ITE Person-Trip Rates 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼

=
𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛𝐼𝐼𝑇𝑇𝑇𝑇

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑒𝑒 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐼𝐼𝐼𝐼𝐼𝐼
 

This estimate, generally derived using loosely assumed mode share and 

occupancy rates, represents the person-trip rate of ITE-type locations—suburban, 

vehicle-oriented, single use locations with no shared parking, little to no transit access, 

and no bicycle or pedestrian activity. These person-trip rates are assumed constant across 

urban contexts, or rather the assumption is that an estimate of person trips derived from 

ITE’s suburban sites is relevant for more urban locations as well. The implications of this 

assumption are discussed in the sub-section Estimating People. However, for study sites 

in urban contexts, this ITE-based estimate of person-trip rates is used to estimate overall 

activity, and then context-based estimates for the urban area are used to determine the 

mode share for the study area, allocating the person-trip count estimates into relative 

mode counts (see Equation 2-2 for the mathematical form of this description). 

Equation 2-2 Reallocating ITE Person-trip rates into Context-Based Modal Trip Estimates 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
 



 

 

 

While the industry shifts toward collecting multimodal trip generation data, 

practitioners continue to struggle estimating the impacts of urban development. In lieu of 

waiting for person-based trip generation estimation methods to become available, the 

industry remains reliant on methods that adjust vehicle trip generation—most often 

estimated using ITE’s Trip Generation Handbook. These adjustments are developed from 

urban trip generation data or they are developed using secondary household travel survey 

data. Eleven of the thirteen major adjustment methods discussed here rely on some “base 

estimate” adjustment—always on ITE’s Trip Generation Handbook vehicle trip 

generation rates, but sometimes allows for some locally collected data. Table 2-1 through 

Table 2-3 provides a summary of all 13 methods for urban trip generation estimation. The 

following section provides a discussion of the similarities and differences between these 

methods, aligning the research with themes and theories of travel behavior and urban 

economics. 

  



 

 

 

Table 2-1 Urban Trip Generation Estimation Methods, table 1 of 3 

Method 
ID: Type of Dataa 

Adjustment 
to ITE's 

Estimates 

Provides Predictions for: 
Region of Data used for Model 

Development Vehicle 
Trips 

Person 
Trips 

Person 
Trips by 

Mode 

Mode 
Share 

Vehicle 
Occupancy 

Trip 
Length 

A Site Yes Yes           Portland 
B Site Yes Yes           California 
C HTS Yes Yes     Yes Yes   Portland, Seattle, Baltimore 
D HTS Yes Yes     Yes     Any 
E Site Yes Yes     Yes     Texas, Florida 

F HTS Yes Yes     Yes Yes Yes Atlanta, Boston, Houston, 
Portland, Sacramento, Seattle 

G Site Yes Yes     Yes Yes Yes 
Atlanta, Boston, Houston, 

Portland, Sacramento, Seattle, 
Texas, Florida 

H Site   Yes   Yes       
Portland, Philadelphia, New 
Jersey, Washington DC, San 

Francisco 
I Elasticities Yes Yes     Yes Yes   Any 
J Site/HTS/other Yes Yes     Yes Yes Yes California, or Any 
K Site Yes Yes     Yes Yes   San Francisco 
L Site   Yes Yes         New York City 
M Site   Yes Yes Yes        Washington, DC 

a Site: travel behavior observed at individual sites; HTS: Household travel survey data; Elasticities: derived from external and prior studies; other: allows 
external data, assumptions and information to be incorporated into model estimates. 
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Table 2-2 Urban Trip Generation Estimation Methods, table 2 of 3 

Method 
ID: 

Area  
Type b 

Ready 
to Use Time of Day c Land-use types 

A Infill Yes PM High-turnover (sit-down) restaurants; Convenience markets; Drinking places 
B Infill Yes AM/PM Mid- to high-density residential; Office; Coffee-donut; Multi-use development; Retail; Other 

C Infill + Yes AM/PM/Daily Restaurant; Service (non-restaurant); Retail; Office; General residential; Single-family 
residential; Multi-family residential; All land uses pooled 

D Infill + No AM/PM/Daily User defined 
E MXD Yes AM/PM Retail; Restaurant; Office; Hotel; Cinema; Residential 

F MXD Yes AM/PM/Daily Employment (office, industrial, retail); Residential Population 

G MXD Yes AM/PM/Daily Any application of Methods E or F 

H TOD  AM/PM Multifamily Housing 

I Flex Yes Daily ITE Categories 
J Flex Yes Daily ITE Categories 
K  Yes PM/Daily ITE Categories 
L  Yes AM/PM/Daily ITE Categories 
M  Infill/MXD Yes AM/PM Multifamily Residential; Lodging 

b Infill +: may be applicable to larger areas that are not single-use; MXD: mixed use development; TOD: Transit-oriented development; Flexible: 
method is flexible to development type. 
c General definitions include, AM: peak hour 7AM-9AM; PM: peak hour 4PM-6PM; Daily: 24-hour counts 
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Table 2-3 Urban Trip Generation Estimation Methods, table 3 of 3 

Method 
ID: Built Environment Parking d Demographic e Internal Capture f 

A Several univariate relationships are provided.   --- 
B “Smart Location” Index developed from multiple characteristics. On-street Area-wide  --- 
C Various measures tested; strongest predictors included.   --- 
D None   --- 
E None   Yes 

F Various measures tested; strongest predictors included.  Trip-maker Yes 

G Various measures tested; strongest predictors included.  Trip-maker Yes 

H Various measures tested and provided.   --- 

I Various relationship discussed and provided. Supply/Price  --- 
J Local information can be substituted to control for context.   --- 
K Rates Segmented by District.  Land use --- 

L No context for rates; Mode share to be compiled according to local 
context.   --- 

M  Densities relatively constant in study area   --- 
d On-street parking: indicator for on-street parking present; Supply/Price: elasticities for constrained supply or parking pricing pulled from prior 
studies.  
e Area-wide: indicates variables describing the surrounding area of the development, such as the block group area of study location; Trip-maker: 
indicates characteristics of observed trip-makers were incorporated into the method development; Land Use: indicates characteristics of the nature of 
the land use itself (e.g., “luxury condominiums” or “discount grocery store”) 
f Internal capture is only relevant for mixed-use developments; methods developed for infill, but not listed as mixed use, do not provide a means for 
estimated internal capture. 
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Discussion: State-of-the-Art Methods 

The methods summarized in these tables are explored below with respect to 

several elements of urban trip generation estimation, travel behavior theory, and urban 

transportation economics. The methods—identified using the ID’s provided in these 

tables—and their relative contributions and performances are discussed in this section. 

Among these methods, there is no clear indication that any of these methods do a better 

job of estimating urban influences in trip generation—e.g. (Shafizadeh et al. 2012; 

Weinberger et al. 2015)—likely due to limited data, so instead, the focus for this study is 

on the relationship between these approaches and travel behavior, land-use development, 

and economic theories. 

Estimating People 

The three of the 13 urban methods that estimate person-trip rates directly (K, L, 

M) are agencies that have compiled their own data repository. The other nine methods 

adjust ITE’s vehicle-trip rates either (a) directly adjusting vehicle-trip rates for urban 

context through reductions in vehicle trips (A, B) or (b) adjusting from a baseline 

estimated person-trip rate derived from ITE’s suburban rates. In these nine methods, there 

are no adjustments for changes in person-trip rates across urban areas—adopting the 

assumption that person-trip rates are constant across all areas.  

 To explore this assumption, we first examine on the travel behavior literature. In 

reference to trip generation, most of the literature focuses on estimating the relationship 

between the built environment, demographics and mode-specific travel (e.g., vehicle 

trips, walk trips) (Ewing and Cervero 2010), mainly centered on travel described from a 
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home-based orientation which limits the ability to transfer findings to a wide range of 

development-types. While much can be explained from independent analyses of mode-

specific travel, few studies have focused on understanding the overall demand for travel 

(e.g., total trips or activity)—or rather the joint effects of land use upon mode-choice and 

trip frequency—potentially leading to over- and underestimation of overall activity (Guo, 

Bhat, and Copperman 2007). 

In lieu of substantial support from the travel behavior literature, we turn to urban 

economics. The theory of bid-rent has indicated that as regional accessibility decreases, 

so does the value of land, e.g. (Alonso 1964; Mills 1969; Giuliano and Small 1991). It 

follows that businesses pay a premium to locate in areas with higher levels of 

accessibility—defined as access to destinations or economic potential. Studies indicated 

that even residents pay more to locate in areas with: greater accessibility in terms of retail 

and total employment destinations (Kockelman 1998; Srour, Kockelman, and Dunn 

2002); lower accessibility to workplace competition (Srour, Kockelman, and Dunn 2002); 

greater access to transportation facilities, such as highways (Iacono and Levinson 2012) 

or metro lines (Anas 1995), although some suggest there is no significantly added value 

in locating near multimodal facilities (including bicycle and pedestrian) (Iacono and 

Levinson 2011). Many studies have also found significant relationships between 

accessibility and employment (Srour, Kockelman, and Dunn 2002), retail (Srour, 

Kockelman, and Dunn 2002), business districts (Cervero and Duncan 2002), population 

(Srour, Kockelman, and Dunn 2002), transit (Anas 1995; Cervero and Duncan 2002) as 

well as toward facilities (Targa, Clifton, and Mahmassani 2005). More directly, the 
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success (sales) of the businesses—which must then off-set any premiums paid by 

increased accessibility of the location choice—is determined by: the regional accessibility 

(population accessible to the site), and the economic potential of the location (income of 

the population that may access the site, discussed later in this section) (Des Rosiers, 

Theriault, and Menetrier 2005). 

Further research is necessary to determine whether the outcomes suggested by 

this theory hold for transportation impact studies—in other words, do person-trip rates 

vary by accessibility to destinations and consumers, land value, or the economic potential 

of sites? Instead, this theory calls into question the assumption that person-trip rates do 

not vary across contexts, which is prominent in nearly every state-of-the-art method. If 

regional accessibility is the metric that reflects how reachable the location is relative to 

other areas in the region—for which no existing study to the best of the author’s 

knowledge has tested—it is included in only three methods to capture variations mode 

share (C) or vehicle-trip rates (B, H). But none of these adjustments account (or test) for 

variation in person-trip rates across any definition of accessibility—even New York’s 

approach provides a single person-trip rate for all five boroughs. The approach used in 

San Francisco (K) indirectly accounts for regional accessibility (as well as demographics 

and densities) in the estimation of mode shares within predefined districts. The New York 

approach (L) for estimating mode share accounts for regional accessibility indirectly 

through qualitative assessment and selection of previously collected data for location-by-

location application. Furthermore, understanding the overall flows of activity to and from 

any one development requires a better understanding of who is traveling in the first place, 
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which leads us to examine the ways in which demographics are incorporated into site-

level transportation impact estimation methods. 

Who the people are 

Few methods account for socio- or economic-demographic indicators. There are 

two ways to incorporate demographics in trip generation analysis: studying the trip-

makers or studying the market in the study area. The former approach is not utilized in 

any of the methods (except for an early version of the method C where mode share varied 

significantly with income (Clifton et al. 2012)), mainly because citing issues in the 

practical application is difficult when we do not know who may be coming to the sites. 

The alternative method to account for demographics is to use some average or median 

values representing the site’s surrounding areas. While developing the Smart Growth Trip 

Generation adjustment (B) and EPA MXD (F), contextual information about the types of 

average households located within the mixed-use development study area—including 

children, household size, and vehicle ownership—were included. For adjustment B, there 

was not enough evidence to suggest the variables were significant. For adjustment F, 

there was evidence to suggest the variables were significant; analysts applying the model 

rely on area-wide descriptions of demographics to apply adjustments. Methods D and K 

use district-based analysis to estimate mode shares—the benefit being that relative-

difference in travel behavior due to trip-maker demographics are incorporated indirectly 

through aggregation of trips that occur in those areas. For example, trips from districts 

with high-land-values reflect trip-maker decisions that would normally travel to high-

land-value districts.  
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To fully understand the travel demand, we must also understand who is traveling 

and why. Within the theory of derived demand, it is recognized that activity patterns of 

individuals and households are constrained in both time and monetary budgets, requiring 

certain types of activities to satisfy both individual and household needs, but constraining 

travel to activities—as well as the activity itself—within time and cost budgets (Bhat and 

Koppelman 1993; Goulias, Pendyala, and Kitamura 1994). Activities are correlated 

among members of a household, particularly among households with children whose 

dependence is so great, and shifts of activity patterns for every member of the household 

can be seen (Pas 1985). In practice, trip generation studies rarely consider the socio-

demographics of the establishment’s market. Without information about who is traveling 

to these establishments, there is a limited ability to control for specific variations in 

demographics using existing data.  

An alternative to accounting for demographics using explicit variables in analysis 

is to incorporate the measure in how the land use is defined (e.g., luxury condominiums, 

discount superstores or grocery stores, toy/children’s store, baby store) (Institute of 

Transportation Engineers 2012) although this segmentation may be a statistically 

inefficient use of the data—the description of how these categories were defined is not 

publicly documented. San Francisco (K) segments residential land-use types by the 

number of bedrooms, attempting to capture variations in household size of the residents. 

ITE considers luxury condominiums as a separate category from condominiums and 

includes a “discount grocery store”’ category (Institute of Transportation Engineers 2012) 

although the definition for luxury and discount in monetary terms is not provided. We are 
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left to assume that any data in the land-use category not specified by some measure of 

price are actually market rate, but this information is neither solicited nor regularly 

collected for uses prior to creating these categories, making demographic-based 

adjustments to ITE impractical.  

There is a substantial amount of interest in investigating the relationship between 

trip-maker behavior and socio- or economic-demographics for development-level 

evaluation of transportation impacts—particularly related to multifamily housing, 

income, and vehicle ownership.2,4,6  

Land Use Categorization and Aggregation 

Next, the detailed categorization of ITE’s land-use classification needs 

consideration. ITE’s Handbook divides their data into over 150 different definitions of 

land use, with little published discussion about the process in which new categories are 

added or aggregated and whether that level of cataloging is necessary for practice. It is 

not clear whether the process of aggregation is based on the definition of land use alone, 

or on some form of statistical testing of behavior. Regardless, methods that directly adjust 

ITE’s vehicle-trip rates rely heavily on ITE’s detailed categorization of land-use types 

(A, B, C, I, K, L), while methods that use household travel survey data (C, D, F), or that 

are constrained by too few data (E), aggregate land use categorization into broader 

designations that reflect zoning definitions (e.g., retail, service, residential). Since the 

user of these data are often the developer—and the stage of development review often 

only provides a rough estimate (Keller and Mehra 1985b) not always corresponding with 
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the final product (McRae, Bloomberg, and Muldoon 2006)—the (dis)aggregation of 

categories plays a big role in how efficiently these data are used.  

Recalling our discussion of “derived demand” in the previous subsection, the 

incentive for studying the trip-maker’s motivations for activities results in a more 

complete understanding of why variations in travel behavior are observed and how better 

estimates or predictions of it can be obtained. Based on this view of travel, more attention 

should be paid to the reasons for the demand for activities themselves, and the 

corresponding derived nature of travel (Pas 1985). The result could be a land-use 

taxonomy for trip generation estimation at the establishment-level that is based in the 

theory of derived demand, supported by activity-based research and theory, and 

considerate of applied practice and the multidimensional information available to 

predicting land-use types at new developments (Guttenberg 2002; American Planning 

Association 2001). By considering the patterns of travel behavior and motivations related 

to specific types of activities, potential similarities and differences between land uses can 

begin to be identified to pinpoint patterns of behavior that allow more accurate and 

precise predictions of transportation impacts of development. 

Built Environment and Multimodal Travel 

Some previous research suggests that travel behavior varies across different 

measures of the built environment (Ewing and Cervero 2010). The built environment 

may include any of the six D’s: density, (land-use) diversity, design, destinations, 

distance to transit, demand management (Cervero and Kockelman 1997; Walters, 

Bochner, and Ewing 2013). (The seventh D, development scale, is accounted for in both 



29 

 

 

the categorizing of mixed-use and infill development and development size. The eighth 

D, demographics, is discussed in the previous subsection.) Although there is a lack of 

consensus for whether behavior, such as mode choice and trip rates, do vary by the built 

environment (Ewing and Cervero 2010), 10 methods evaluated here include the built 

environment in their estimation process, placing a great importance of urban context in 

estimating variations in trip generation—specifically as it pertains to changes in mode 

shares or mode-specific trips.  

Household travel surveys are commonly used to estimate multimodal mode share 

and vehicle occupancy rates (C, D, F, G, I, J, K, L). Alternatively, methods can utilize 

intercept surveys performed during the site-level data collection (E, G, L), but these data 

are both expensive to collect and difficult to synthesize for future use. In New York (L), 

mode shares are not attached to person trip generation rates, but provided location-by-

location based on the land use and urban context of the development. In Washington, DC 

(M), due to small variation in densities, multimodal trips are estimated as a function of 

development size, without regard to variation in the built environment. 

Only two methods account for TDM strategies (beyond transit access): metered 

parking within 0.1-miles of the development (B); proportion of surface parking (B); and 

various transportation demand management programs (I). Agencies, like San Francisco 

(K) and New York City (L), often negotiate credits for adopting strategies allocated 

through a separate process. NCHRP 684 (E) includes a small sample of study sites (six), 

but uses proportions of land uses to interpolate potential mixing of land uses. The 

combination of NCHRP 684 with EPA MXD (F) into MXD+ (G) allows the user to 
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control for variations in mode share based on a wider sample of sites and built 

environments provided by household travel surveys used in EPA MXD while 

maintaining the robust analysis of how trips within developments are captured by other 

land uses. These methods are discussed in the following subsection. Seven methods 

account for the built environment using either continuous measures describing the built 

environment (A, C, F, G, H, I) or a distilled measure using factor analysis (B). Two 

methods (D, K) account for the built environment by using districts or zones to estimate 

variations in mode shares. 

Mixed-use or Multi-use Methods 

Adopted in the second edition of the Handbook (Institute of Transportation 

Engineers 2004), ITE incorporated a method to estimate impact adjustments for mixed-

used development. A mixed-use development (sometimes called a multiuse development) 

is defined as “an integrated development (usually master planned) consisting of at least 

two complementary and interactive land uses designed to foster synergy among activities 

generated by the land uses” (Institute of Transportation Engineers 2014, 138). Literature 

discussing mixed-use developments, trip generation, and internal capture tends to reflect 

the data analysis of large planned communities. By ITE’s definition, however, the scale 

of these developments tends to include mostly single developments (planned 

simultaneously, but built out in stages), ranging from 7 to 300 acres in scale (Bochner et 

al. 2011), but other comparable studies have even focused on developments anywhere 

between 5 to over 2,000 acres (Sandag 2010; Ewing et al. 2011). In mixed-use 

development analysis, “internal capture” is defined as “a person trip made between two 
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distinct on-site land-uses at a mixed-use site without using an off-site road system” 

(Institute of Transportation Engineers 2014, 129). This type of trip can be made by any 

type of transportation mode.  

By removing trips that are internally captured from the overall estimate of 

transportation demand, the estimate reflects trips that are added to the existing network 

after the development occurs. For new development (or re-zoned development), this 

means that only the change in transportation demand, before and after development, is 

used to assess the impacts—either through impact fees or charges, or when evaluating 

necessary mitigations to the adjacent transportation network (e.g., roadway widening, 

turning bays, intersection upgrades). For mixed-use development, ignoring internal 

capture would result in over-development for the automobile—which inhibits precisely 

the goal that mixed-use developments are trying to achieve: walkable, connected, planned 

neighborhoods. Similarly, for infill development, analysts also assume that a proportion 

of travel to new development is “pass-by” traffic, or does not necessarily add traffic to 

the network. The methods of collecting and applying pass-by data were not subject for 

review in this study. 

Three methods (E, F, G) were established for mixed-use developments, ranging 

from single-building developments (F, G) to 800-acre planned development, and these 

methods account for whether person trips (by automobile, foot, bicycle, or transit) 

generated to the study area are external or internal. Because NCHRP 684 (E) was 

developed using site-level data from only six locations, the authors combined their 

estimates with the results provided from EPA MXD (F) to derive reconciled estimates in 
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MXD+ (G). The other methods mentioned in Table 2-1 through Table 2-3 are primarily 

for infill, although each of these methods on their own can be used to estimate 

establishment rates (although not internal capture) located within mixed-use development 

to refine rate estimates. 

Hooper et al. (1990) and Bochner et al. (2011) have set the standard for mixed-use 

and multiuse development data collection at large (3 to 800 acre) mixed-used 

developments. They approach the complexity of capturing the internal trips between land 

uses within the development with a system of: cordon counts (automobiles); Manual 

person counts; intercept surveys at establishments and transit access points; and intercept 

surveys along internal sidewalks. These data collections are often the most expensive to 

perform—costing upwards of $50,000 per site (Bochner et al. 2011)—and therefore are 

much harder to find than single-use or single-building sites (as much as $10,000 per 

site).2 

The term “mixed-use development,” however, includes a broader definition in 

practice than considered in ITE-related studies. Mixed-use development includes any 

area where the mix of land uses results in trip chaining between the land uses. While 

there is a growing literature on the overall transportation impacts of mixed-use planned 

developments towards an analysis that examines the influences of mixed uses on infill 

development within existing communities—we understand less about how these infill 

developments function within an existing mixed-use community—like historic 

downtowns, urban commercial corridors, or the central business district. Authors in a 

2013 study surveyed visitors to shopping districts in suburban and urban areas and found 
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that 65% of trips between land uses in all shopping districts were walking trips, but in 

urban centers, approximately 96% of trips between land uses were walking trips 

(Schneider 2013). Furthermore, an understanding of the ways in which trips are captured 

within mixed-use buildings has just begun to emerge (Walters, Bochner, and Ewing 

2013), but the available methods have not been adequately tested within a dense urban 

range of contexts—particularly because of the extensive costs of data collection. As such, 

new approaches to capturing and understanding the interactions between infill 

development and the surrounding existing area are needed. 

Conclusions 

Trip generation estimation methods for transportation impact analyses were 

developed with an eye for simplicity—a quick rule-of-thumb reference—but estimating 

transportation demand is more complex and nuanced than methods in practice suggest. 

Research developed in response to this review may increase the flexibility of the data 

available for practice, extending the life of information by being more efficient in how it 

is understood and being used. This will allow agencies, developers, and practitioners to 

recognize which elements of a new development and its environment might influence the 

expected transportation impacts, permitting more appropriate mitigations to be 

considered to achieve planned results. This review identifies methods eligible for 

transportation impact analyses, providing a critique in the successes of existing methods, 

as well as the gaps supported by the literature. 

The findings of this review indicate strong support for understanding the 

influences of the built environment on vehicular trips, but not necessarily on multimodal 
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trips. The assumptions used for most of the existing methods—adjustments to ITE’s 

method—have not been tested for conflicts with theories of urban economics, such as 

(Alonso 1964, Des Rosiers, Theriault and Menetrier 2005), to the best of the author’s 

knowledge. There appears to be little-to-no sensitivity towards the relationship between 

the sociodemographic of the trip-maker and behavior for TIA, which may cause over- or 

under-estimation of vehicle travel in areas on either end of the income distribution. 

Moreover, the current detailed segmentation of land-use categories may not provide any 

additional benefit for evaluating new development, particularly as the TIA process is held 

very early in the development stage. Moreover, detailed accounts of the businesses 

occupying the development may not be known. Overall, the gaps identified from this 

review of state-of-the-art methods suggests consistencies with travel behavior theory 

related to identifying likely trip-makers—sociodemographic and economic constraints 

that define a time and monetary budget for travel to land-use development. While the 

extent of the corresponding biases for these issues is yet unknown, multiple existing and 

on-going projects aim to target several of these problematic areas.  

Although this study identified several gaps and issues in this process, primed for 

future research, the responsiveness to these themes in state-of-the-art methods in urban 

transportation impact analysis has improved substantially within the past two decades. 

However, there has been little effort in the literature to identify the widespread use, 

substitution or replacement of existing methods in practice. These findings suggest only a 

limited and anecdotal view of the state-of-the-practice of transportation impact study 

approaches.  
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While this manuscript has focused upon existing, peer-reviewed and published 

methods for estimating urban trip generation for TIA, many new forms of data have 

become more readily available to agencies and analysts. While ITE has only recently 

accepted and incorporated adjustment methods developed from more traditional and 

pervasive household travel surveys into use, there remains an ever-growing list of new 

technologies that may be applicable to such circumstances. Examples of which include, 

but are not limited to: smart phone tracking data and “push” surveys, transaction count 

data, Google data like “popular times” activity distributions, and passive-data-collection 

technology including Bluetooth tracking and various forms of sensors. Likewise, the need 

for responsiveness in urban trip generation methods to planning policy goals and 

indicators requires the merging of multiple forms of data to describe urban form, 

transportation facility pricing, and, not the least of which, parking. Few methods consider 

and explore the endogeneity of parking availability and pricing in vehicle and multimodal 

trip generation estimation. The practicality and effectiveness of these types of data in site-

level impact analyses will be directly related to the capacity, support, and willingness of 

agencies to test and adopt new technologies that may improve accuracy and precision, as 

well as the theoretical understanding of transportation impacts at urban land-use 

development.  

Additionally, few have discussed the uncertainty and limited information 

available to developers and analysts during the time many TIA are completed. Many 

building permits are tied up in the process of site-level evaluation, leaving impact fee 

estimates and TIA studies tied up in rough predictions of what the development may 
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become. McRae et al. (2006) reviewed 12 TIA studies after development and found that 4 

were not developed as planned in the TIA. This, combined with the inherent uncertainty 

existing in all transportation demand modeling predictions, leads to the question: Is it 

reasonable to evaluate new development so early in the development process and per 

estimates from models not necessarily sensitive to planned outcomes seen as influencing 

behavior? Or rather, should the evaluation of impacts along a singular metric of trip 

generation—that so often leads to incremental over-development of automobile facilities 

(Manville 2017), regularly in direct conflict with regional plans—be the primary means 

of determining whether mitigations to the network be made? This is certainly a necessary 

area of future research and thought. 

The methods available today, albeit adjustments to existing data of limited 

contexts, provide a means for planners and engineers, agencies and practitioners, to 

respond more flexibly toward planning outcomes, specifically the built environment. That 

said, there exists only limited evaluation of the performance and improvement of these 

methods for wide-spread applications practice. Expanding and improving evaluation may 

orient the user toward methods that perform better for their specific contexts or land uses. 

Furthermore, more could be done to assess how these approaches are being adopted, 

substituted, tailored for local context, or even prohibited by agencies and practitioners 

around the United States. As such, one of the main objectives of this manuscript is to 

provide a landscape from which researchers, agencies, and practitioners can more directly 

aim to continue to move the state-of-the-art forward.  
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CHAPTER 3 THE COSTS AND BENEFITS OF EXTENSIVE LAND-USE 

TAXONOMY IN TRIP GENERATION FOR TRANSPORTATION IMPACT 

ANALYSES 

Introduction 

A substantial amount of recent research has been dedicated to improving methods 

available for transportation impact analyses (TIA)—focusing much of the attention on 

varying travel outcomes (Clifton, Currans, and Muhs 2013; Currans and Clifton 2015; 

Ewing et al. 2011), controlling for the built environment (Bochner et al. 2016; Clifton, 

Currans, and Muhs 2015; Schneider, Shafizadeh, and Handy 2015), parking (Schneider, 

Shafizadeh, and Handy 2015), transit access (Cervero and Arrington 2008; Clifton, 

Currans, and Muhs 2015; Schneider, Shafizadeh, and Handy 2015), and evaluating the 

accuracy of methods, both old and new (Shafizadeh et al. 2012; Weinberger et al. 2015). 

Few have evaluated continued use of the pre-existing definitions of land use themselves. 

As Hodge (1963) notes, the classification of data into nominal categories is often a 

precursor towards all other forms of measurement (e.g., ordinal, ratios, intervals, 

continuous measures)—making the definition and categorization of land use an 

understudied aspect of TIA methods research. 

For transportation impact analyses or studies (TIAs or TISs) and underlying data, 

the categorization of land use is often taken for granted—arguably more than any other 

aspect. In the past, several years there have been considerable efforts expended toward 

improving methods commonly used for TIA of new development, e.g., (Bochner et al. 

2016). Urban agencies have created a demand for new tools and data with sensitivity for 
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urban-planning-policy objectives, including a broader range of outcomes (e.g., person 

trips, mode share, vehicle occupancy, trip length) and inputs (e.g., activity density, mixed 

use, and parking supply and pricing). Correspondingly, the Institute of Transportation 

Engineers—the predominant resource supplying these data and methods—has published 

a revised Handbook working to incorporate the growing volume of studies aimed at 

addressing this gap in practice (Institute of Transportation Engineers 2014), with the 

intention of updating it in the coming year (Bochner et al. 2016) aimed at improving 

aspects often criticized—transparency, contextual information and variables, and 

guidance for applications in urban areas. Examining the categorization of land use should 

be an important part of this process. 

There are indirect benefits for this evaluation of land use definitions. An overly 

detailed and ad hoc categorization of land uses may lead to a false sense of precision, and 

an expensive one at that. Transportation impact studies are often conducted and timed 

with the building permit. Not all developers have the ability to pin-point the specific land 

uses occupying a commercial space at the time of building development. Over-

specification and -segmentation of land use reduces the sample sizes used to identify 

rates and limits the user to a single independent variable (size of the development), and 

requires more data collection for a longer list of categories. The application of detailed 

taxonomy seems like a more robust way to provide accurate estimates, but if specific 

categories are truly different than more generalized definitions, analysts may assume a 

false sense of precision by using specific codes. Additional features of land use—such as 

drive through access or product types—are then controlled for further segmentation of the 
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data into additional categories. If “new” land uses are identified, this process requires 

new land-use categories which are then made up of small sample sizes. No publicly 

documented framework has been created for assessing behavior patterns to identify 

existing land use data that may fit the patterns at the “new uses.” 

More strategic classification (or aggregation) of land use—with theoretical 

underpinnings—could allow for larger sample sizes within each category, supporting the 

use of additional variables to control for other important factors, such as urban context, 

demographics, transportation-demand-management strategies, and parking supply and 

price. Identifying the underlying behavior of these new land uses would provide a method 

of classifying land use by behavior.  

Moreover, the ways in which individuals participate in activities, particularly 

commercial activities, are evolving. Purchases and activities that were once observed at 

brick-and-mortar stores or shopping centers are carried out online. They are shipped to 

the household within days and sometimes hours. Even certain work activities are 

becoming more untethered to traditional workplace locations—allowing participants to 

work from home coffee shops, restaurants, and parks. Furthermore, we have seen a 

number of new land-use categories show up in the past few years, including but not 

limited to: fast casual restaurants, fast fashion retailers, dining/grocery shopping hybrids, 

and marijuana dispensary facilities. For each of these land uses, new calls for data are 

issued, and accordingly, data is collected resulting in the development of more low-size 

samples for these new uses. By evaluating the underlying motivations behind travel to 
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these differing land uses, these methods might be better equipped to accommodate 

changing trends in activity and travel behavior. 

This manuscript revisits the land-use categories defined within ITE’s Handbook, 

traditionally containing vehicle-oriented, suburban guidance. The aim of this manuscript 

is to evaluate whether the current extensive classification of ITE’s land uses is 

necessary—or even useful—or whether examining the statistical differences and 

similarities of behavioral patterns across categories would be more accurate. Here, this 

analysis aims to identify salient activities and social interactions of land uses that relate to 

varying trip generation rates. The primary source of data used in this analysis is also the 

main resource of data used in transportation impact assessments across the United States: 

ITE’s vehicle trip generation rates. To narrow the scope of this manuscript, commercial 

land uses were the focus.  

Two questions are explored: (1) how are vehicle-trip rates statistically different 

across ITE’s land-use categories? And, (2) what benefits (and costs) are accrued from this 

extensive taxonomy? By evaluating the statistical difference between trip rates, the focus 

of these methods can be applied to prominent elements of new development that most 

correspond to differences in trip rates, while simplifying the process of identifying and 

classifying development early in the planning process. In addition, every decision in 

policy comes at a cost—the benefits of this taxonomy, therefore, are weighed against the 

costs.  

The organization of this manuscript follows. First, we provide some context for 

this analysis. This study includes an overview of the background of transportation impact 
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studies and the data that corresponds with it (mainly, ITE’s Handbook). We approach the 

literature review first from the broader context of land use classification for planning 

purposes, and then from an examination of travel behavior theories that explain why 

some behavior patterns are similar, and some are not. Then we explore the data and 

methods used in this manuscript to test these comparisons, followed by the results. This 

manuscript ends with a discussion of the results, incorporating the limitations of this 

analysis, recommendations for practice and next steps.  

Background 

Transportation Impact Analyses or Studies (TIAs or TISs) 

To offset potential impacts of new development, government agencies have long 

required developers to assess the transportation impacts of new development against 

performance metrics. This assessment, often denoted as traffic or transportation impact 

analyses or studies (TIA or TIS), these agencies then couple this evaluation with the 

requirements of corresponding mitigations necessary to prevent the failure of impacted 

transportation facilities, sharing the burden of improving the transportation network 

between the city and private developer. While there exists nationally available resources 

that explain, critique, or recommend different TIA practices, e.g., (Keller and Mehra 

1985b; McRae, Bloomberg, and Muldoon 2006)—requirements vary across agencies and 

states—a general overview of TIA is provided here, with an emphasis on the relevancy of 

land use definitions.  
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A TIA is an assessment of the transportation impacts for which new or renovated 

development is responsible. It is generally required when the impacts are deemed 

significant in order for the developer and agency may share the growing burden of 

impacts.   Not all development requires a TIA—many agencies provide a threshold 

against which development is compared to determine the need for more robust studies 

and evaluation.  

Generally, an analyst estimates the overall “trips generated” to a site, removing 

some proportion estimated to be already “passing by” the development and, therefore, not 

included as new impacts. This estimate provides an approximation of new impacts. The 

remainder of trips are then allocated to the facilities extending away from the 

development. This process varies and may require more information about the 

distribution and flows of existing vehicle traffic as well as nearby land use—such as large 

housing developments or office parks—to assist the estimate for direction of travel. This 

estimated “traffic” derived from the new development is then added to the current traffic 

volumes, and the adjacent facilities are evaluated for potential failures in service. The 

agency, often through a negotiation between the developer and the agency, defines 

standards to determine which facility is evaluated (e.g., intersection signalization or 

timing, turning-bays, roadway width or lanes) and how far the scope of the study extends. 

The developer is often then required to assess the impacts of their development at each 

stage of the build out—and according to some forecasted timeline (e.g., three or more 

years) by assessing the development against projected nearby development and growth.   
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This process generally occurs early in the development process and is sometimes 

tied or associated with building permits. Developers may be developing the sites for their 

business or for tenants of other businesses. In the case of the former, the type of land use 

would be known (i.e., developers working on behalf of a grocery store chain would likely 

know what land use into which their project falls). However, if the latter were true, the 

developer likely only would be guessing at the land-use type (i.e., a developer developing 

a commercial development that may include services, retail, or office space would 

speculate who prospective tenants might be). This is complicated when the process of 

development review in question requires re-evaluation of impacts for change in tenants 

not originally covered under the first permit. A change in tenants may trigger another 

review—a potentially expensive process of analysis and mitigations that may inhibit 

smaller businesses from filling in vacant locations.  

Finally, it is worth noting that the implications of this research, which focuses 

primarily—but not solely—on ITE’s Handbook data and methods, reach beyond TIA 

studies. Other types of site-level assessment are sometimes tied to new development, 

related in theory and method, but often not always in practice. Processes that rely on 

similar data and methods include—but are not limited to—computation of impact fees; 

system development charges; utility fees; or other monetary exactions; impacts of 

rezoning; and scaling or scoping projects. Greenhouse gas estimations (ENVIRON 

International Corporation and the California Air Districts 2013) are also reliant on these 

data as a starting point for estimating demand at non-household land uses. 
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Theory of Derived Demand and Travel Behavior  

Travel itself is fundamentally derived from the demand of activities at 

destinations (Kitamura 1988). On the conceptual level, this means that the travel 

observed when studying trip generation might be explained by the motivations of those 

who participate in the activities occurring at land uses. While we are examining vehicle 

trips in this manuscript, this could also include: the turnover of trips (how long the 

activity takes), the trip length, trip chaining (pass-by or diverted trips), and the frequency 

of trips made by any one person. To understand how travel varies, the theory of derived 

demand suggests that the motives for activity-participation—who travels for what, when, 

why, how and how much—should be the center of the investigation (Kitamura 1988; Pas 

1985).  

To segment and study activities and corresponding travel patterns, some travel 

behavior researchers and demand modelers categorize the nature or function of activities 

and trip purposes into three mutually exclusive and collectively exhaustive categories 

based on hierarchy of needs, e.g. (Bhat and Koppelman 1993; Reichman 1976): (a) 

mandatory or subsistence activities (namely work and work-related events), (b) 

maintenance or personal activities (e.g., those that satisfy biological and physiological 

needs), and (c) discretionary or leisure activities (e.g., entertainment, social, or 

recreational). This translates into the modeling of trip type (e.g., home-based, work-

based, or other activity). It is worth noting that some researchers disagree with this stark 

segmentation of activities, questioning whether the psychological response to activities 

from each of these categories are the same for different people at different times or 
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whether activities might fit into a mix of categories for different people (Mokhtarian, 

Salomon, and Handy 2006).  

Much of travel behavior research is determined to address these attributes of 

activity-based travel behavior working to uncover the dependent relationship between 

activities and travel. While many researchers have noted a lack in the literature that 

defines a causal relationship between activities and travel behavior (Ferrell 2005; 

Goulias, Pendyala, and Kitamura 1994), this theory of derived demand—and the 

corresponding activity-based analyses that followed—makes up the basis for the majority 

of travel behavior research to date (Marlon Boarnet and Crane 2001). 

There exists only limited analyses of overall demand for specific activities (Crane 

1996) that by extension can lead to the conclusion that there is also an incomplete 

understanding of the demand for activities at a more-refined level than the hierarchical 

classification of activities (e.g., sustenance, maintenance, and leisure). Moreover, because 

the majority of travel-behavior research focuses on individuals at a household-level of 

analysis instead of establishment-based, lessons associated with the literature raise 

potential questions to extend the analysis of establishment-based transportation impacts. 

Additional research is necessary to apply the theory of derived demand to the practice of 

establishment-based trip generation estimation.  

Activity-Based Considerations Testing a Revised TIA Taxonomy 

Within this section, categories of land use codes are identified based upon 

potential activity-based similarities in behavior (as classified within ITE’s most recent 

Trip Generation Handbook (2014)) warranting further evaluation. The incentive for 
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studying the trip-maker’s motivations for activities, results in a more complete 

understanding of why variations in behavior may be observed and how estimates might 

be improved from it. The purpose is to evaluate a land-use taxonomy for trip generation 

estimation at the establishment-level that is consistent with the theory of derived demand, 

supported by activity-based research and theory, and considerate of applications in 

practice and the multidimensional information available to predict land-use types at new 

developments (American Planning Association 2001; Guttenberg 2002). In this section 

we identify potential aggregations for ITE’s land use definitions based on the activity and 

retailing literature. By considering the patterns of travel behavior and motivations related 

to specific types of activities, divisions in land uses may be identified and explained by 

patterns of behavior that allow us to more accurately and precisely predict transportation 

impacts of development. 

First to illustrate this point, the influence of “convenience” land uses are 

examined. As Bhat & Koppleman suggest (1993), the relative levels of accessibility 

between residential land uses and commercial establishments reduces the burden on the 

trip-maker, in terms of travel time and costs. These factors, thus, increase the likelihood 

that trip-maker’s will travel to accessible establishments. The description of land use may 

explain the difference between establishments oriented for quick stops (e.g., convenience 

markets, small coffee shops and restaurants, fast food stops) and those designed for a 

longer stay (e.g., sit-down restaurants, quality restaurants, supermarket). Although the 

market activity for the businesses is to satisfy maintenance and discretionary needs, their 

business model locates them in high-accessibility areas, which allow customers the 
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ability for stop-and-go activities. Examining the significance of similarities between 

“convenience” trip rates is one hypothesis tested in this manuscript. 

There exist several limitations to the application of activity-based perspective to 

the practice trip generation estimation. Activity at different land uses across different 

times varies because the demand for those activities varies. Part of what constrains these 

variations are temporal and monetary constraints (Bhat and Koppelman 1993; Goulias, 

Pendyala, and Kitamura 1994). And these constraints are not limited to the individual’s 

daily activity requirements, needs, and wishes—the individual’s decision to travel (or 

not), participate (or not) happens in concert with the other household members (Goulias, 

Pendyala, and Kitamura 1994), particularly when children are present (Pas 1985). 

Detecting these relationships at an establishment-level is the primary aim of this study. 

In the literature, there are many examples of how aspects of land use may 

influence the observed behavior at an establishment-level:  

• Activities of convenience (Bhat and Koppelman 1993) (e.g., high-turnover, 
minor shopping and service);  

• Product base (Brown 1992) (e.g., retail product base and relative market, 
or specialty, broad and narrow product ranges; small (clothing) versus 
large (furniture) products);  

• Size of development (Brown 1992; Dunkley, Helling, and Sawicki 2004) 
(e.g., compare smaller restaurants with land uses of convenience, or 
compare larger restaurants with land uses of low-turnover retail);  

• Institutional format of similar products (Brown 1992) (e.g., shopping 
centers, grocery stores, convenience markets;  

• Dependence of trip-maker (Kitamura 1988; Pas 1985) (e.g., activities 
derived for markets dependent on others, elderly and children;  

• Social/recreational activities (Mokhtarian, Salomon, and Handy 2006) 
(e.g., indoor versus outdoor recreation or exercise land uses, or movie 
cinema versus dining activities);  

• In-home and out-of-home substitutions (Mokhtarian, Salomon, and Handy 
2006; Salomon 1986) (e.g., eating outside of the home);  
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• Temporally similar travel (Clifton, Currans, and Muhs 2013) (e.g., cross 
temporal comparison of convenience activities (trip-chaining) that occurs 
during the AM versus PM peak commute);  

• Location of establishment within a development (Bhat and Koppelman 
1993; Brown 1992) (e.g., changes in trip rates due to potential trip-
chaining, synergistic influences on rates, or shopping centers versus 
grocery stores, infill versus mixed use );  

• Activities influenced by friction-reducing technologies (such as 
information and communications technologies [ICT]) (Ferrell 2005; 
Salomon 1986) (e.g., pre- and post- 2000 effects);  

• Sales philosophy (Brown 1992; Clifton, Currans, and Muhs 2013) (e.g., 
how businesses market themselves in price, service or culture: luxury 
versus discount, family-friendly (large scale, seating) restaurants, age-
specific markets);  

• Scale of business (Brown 1992; Des Rosiers, Theriault, and Menetrier 
2005) (e.g., national, regional and location chains of similar land-use 
types).  

Note that most of these noted differences are unobservable at the establishment-

level given ITE’s typical descriptions. For example, not all restaurant trip rate data has 

information distinguishing sites with an excess of seating which might cater more 

towards leisure dinning or low-turnover activities with those that seat smaller groups of 

customers which might indicate higher-turnover dining. The establishment name and 

brand as well as relative location within commercial districts or shopping centers are also 

not typically noted in trip generation reporting and are therefore not testable in this 

analysis.  

Temporal Changes in Land Use Definitions and Aging Data 

The interaction between trip-makers and land use have also evolved over time. 

For example, land uses responsive to innovations of ICT: as changes in ICT influence the 

availability of activities at new locations (e.g., in-home shopping, telecommuting from 
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coffee shops), there exists a shift in the amount of travel time and costs dedicated for 

certain types of trips, such as reduced work-related and shopping travel times. These 

shifts in behavior result in increased time available for other trips, potentially shifting 

demand to participate in other activities at other land uses (Ferrell 2005; Mokhtarian, 

Salomon, and Handy 2006; Salomon 1986). Time-crunched working women, for 

example, are a particularly latent market for online shopping. Telecommuting women 

who saved time on commute travel were more likely to perform travel-heavy routine 

shopping online—such as price-comparison shopping— instead of at a commercial land 

use, but this shifting in activity was reallocated to other maintenance activities, such as 

child care, appointments, and financial transactions (Gould, Golob, and Barwise 1998). In 

this example, the improvements in technologies over time suggest that behavior (in terms 

of trips) may have shifted for certain demographics from shopping to other activities—

implying a temporal influence on trip rates due to the introduction of technologies. 

Banking is a clear example of a maintenance service that has transitioned toward 

becoming an in-home (or at-work or mobile-phone) activity. Trip generation has been so 

clearly influenced by these changes in ICT that it is currently the only land use in ITE’s 

Handbook to have older data removed due to significant changes in overall trip rates (pre-

2000) (Institute of Transportation Engineers 2014, 7–8). 

ITE’s data extends back to at least the 1960s (Institute of Transportation 

Engineers 2014). Changes in behavior overtime lead to problematic demand estimates by 

assuming the way people have traveled and interacted with land use in the past will be the 

same in the future. In an examination of the performance of transportation forecasts for 
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major projects, one leading cause for bias in estimates was “assumptions drag” 

(Flyvbjerg, Holm, and Buhl 2005)—where old data and assumptions were continued in 

use, despite quantitative evidence against the use of such information. Retaining these 

data implies that trip rates have not changed. In other words, there is an embedded 

assumption that vehicle trip generation rates have not changed over time. 

Data – ITE’s Handbook Land-use taxonomy and Data 

Classification within the Handbook combines a complex set of land use definition 

to segment their data into nested and overlapping dimensions of land use: economic 

function (e.g., manufacturing, retail, services), activities based on business type and 

structure of  (e.g., supermarket, sit-down (high-turnover) restaurant, arts-and-crafts store), 

product (e.g. pet supply superstore, baby superstore, toy/children’s superstore), and 

demographic-specific markets (e.g. luxury condos, discount supermarket or club, senior 

adult housing) (Institute of Transportation Engineers 2012). Data are segmented into 

presumably mutually exclusive categories—each observation may fall within only one 

land-use category. The process for determining pooling or segmenting land-use 

categories is seemingly ad hoc, classifying data based on the economic industry for the 

type of product or service provided. There exists no clear public record, to the best of the 
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author’s knowledge, of how these land-use categories were originally or are currently 

determined.9,10 

As discussed previously, in this manuscript, we focus on retail and service land 

uses—both generally observed in “commercial” zoning categories in practice. But 

“commercial” land uses would also generally include rates provided for services rendered 

in other building types (such as offices). They are not included in this category. 

Businesses located in offices that vary across the types of services they provide (e.g., 

engineering, architectural, legal) are generally lumped together into general office 

categories—with the exception of medical services offices, which are lumped together in 

a separate land use. Conversely, retail and retail-like services are not generalized by the 

structure type in the same way. They are segmented into categories—at varying levels of 

detail—mostly comparable to the detailed economic industry classifications described in 

the hierarchical North American Industry Classification System (NAICS) taxonomy. 

                                                 

9 Members of the Institute of Transportation Engineers technical board who are known 

contributors to the current and previous Trip Generation Handbooks were contacted for potential references 

and background information in October 2015 and again in March 2017. The author has not yet gotten a 

response (July 20, 2017). 

10 It is likely that the methods for testing the differences (or similarities) include a combination of 

professional judgement and statistical tests assuming normally distributed data, as used for testing the 

changes in trip rates over time (Institute of Transportation Engineers 2014, 7). 
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More recently developed methods have produced generalized land use categories, 

relying upon small datasets spread across a wider range of urban contexts. The result has 

been a much aggregate categorization compared with ITE’s taxonomy: residential 

(sometimes multifamily versus single-family), commercial or occasionally retail and 

service (sometimes restaurant), and recreation (Currans and Clifton 2015; Ewing et al. 

2011; Millard-Ball 2015). In these more recent improvements to methodologies, the 

authors have suggested or required the data used for their adjustments be segmented in 

much broader categories, avoiding too much specificity that would limit overall power 

and applicability while attempting to capture behavior as it varies from location to 

location (Clifton, Currans, and Muhs 2013; Millard-Ball 2015; Shoup 2003).  

Defining Land Use  

Defining land use is no small task—and providing a consistent definition to apply 

across jurisdictions with varying regional planning goals, needs, concentration areas, 

objectives, and problems only further complicates this process. The American Planning 

Association (APA) released the Land Based Classification Standards (LBCS) in an 

attempt to do just that. A multidimensional system defined originally by Guttenberg in 

(1959), and then again in (1984) and (2002)—the process of defining something so quick 

to evolve is a dynamic process. Guttenberg (2002, 1959) argued that a consistent 

classification system requires multiple dimensions to accurately and consistently describe 

land use that is adequately sensitive to a range of planning objectives and arenas. The 

dimensions from this work included definitions for: 

• Ownership: the relationship between the land rights and use; 
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• Site: describing the structures and developed state of the land; 
• Structure: indicating that the type of building and potential use, may 

differentiate between the relationship between the structure and larger 
regional special structure (e.g., superstore, regional center); 

• Economic function: the economic industry function; and 
• Activity: descriptions of what people do at each use. 

Ultimately, the system was developed with the ability to add dimensions—

extending evaluative descriptions with prescriptive (Guttenberg 1984) or allowing for 

subclassifications such as “activity level,” “time pattern,” or “regional versus local 

generators” (Guttenberg 1959).  

Generally, the ownership and site dimensions are generally irrelevant during TIA 

estimation. However, ownership of the land/building (e.g., rent, own) may indicate who 

is developing the land and how much information is known about the occupying 

entity. Nearly all trip rates describe travel to and from structures, with the exception of 

recreational parks and land uses with acre-based indicators. This leaves most of ITE’s 

definitions to fall within two dimensions: economic function and activity. While defining 

“activity” may be closest to linking behavior with “activity levels”, ITE’s definitions tie 

most closely with economic function—with the exception of a few aspects included in 

definitions (e.g., drive through, centers, superstores) that more accurately reflect structure 

or activity.  
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ITE’s Trip Generation Handbook Data 

Although ITE generously supported access to the data through the OTISS 

software,11 these data were generally provided in graphic form. Data were queried—for 

each land-use category, time period, and independent variable, year of data collection, 

and region—and individual observations (trip counts) were digitized. Although ITE notes 

the data included in the 9th edition Manual (2012) to be collected between 1960 and 

2013, a small percentage of data were identified as being much older than that. Data were 

also queried by the region of the data collection (e.g., Central, Pacific, Eastern, or 

Midwest); any observations that did not have a region and a year associated with it were 

removed for analysis.12  

These data were not without limitations. Through filtering and querying to 

compile the data set, the digitizing of the graphics would likely result in the introduction 

of additional measurement error. For any one data collection, a single observation 

(counts) may also correspond with more than one independent variable; a restaurant, for 

                                                 

11 The Online Traffic Impact Study Software (OTISS, accessible at: otisstraffic.com) is a product 

from a third-party company that provides alternative online filtering and querying tools to search ITE’s 

Trip Generation Handbook trip generation rates. They purchase a license from ITE to use its data and 

additional ability to filter data by age and region. These variables are not accessible through ITE’s 

Handbook, which is only provided in hardcopy format. 

12 Although no contextual information beyond the region of data collection was provided, the 

authors determined that without the date and location (no matter to what degree masked), the trip rates were 

just numbers without any context at all and therefore should not be included in this analysis. 
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examples, may be observed once but included as a rate per square footage, per employee, 

and per seat. For this analysis, we consider only those provided for rates measured by the 

square footage of the land use. In Figure 3-1, the distribution of vehicle-trip rates (lower 

x-axis, black box plots and red dots) and the range of the age (upper x-axis, blue bar) are 

plotted for each category.   
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Figure 3-1 Boxplot of Trip Rate (bottom x-axis, black whiskers and red dots) and Age (top x-axis, 
blue whiskers) for Retail and Service Categories (y-axis)  
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How representative are these data of retail and service land use exhibited in the US? 

With more than 170 land uses total, ITE’s Handbook provides a wide variety of 

detailed land-use categories. The ability to discuss how these land-use categories are 

representative of the universe of land use in the US provides several benefits. First, 

representative data allows for more strategic and efficient sampling. If existing data 

represent an adequate variety of contexts (built environment, regions, demographics) 

within a given land use, one might direct funds to data collection of land uses that are 

underrepresented in the data. The estimated costs associated with keeping up the existing 

land-use taxonomy are considered in the results—comparing expenses with the relative 

benefits of a detailed taxonomy. Second, a representative data set (or a data set where the 

representation is explicit) is more readily aggregated into pooled rates—a common 

complaint from agencies and practitioners who struggle to pin down the detailed land use 

codes early in the development review process. 

To compare the distribution of ITE’s retail and service data, we compare with the 

distribution of retail and service businesses in one regional area, Portland, Oregon for 

investigation and evaluation. First, a crosswalk is developed to connect ITE’s land-use 

categories and the 2007 North American Industry Classification Standards (see Table 3-1 

and Table 3-2). Then, ITE’s data are aggregated into a simplified table—pooling some 

similar land-use categories for simplicity (see Table 3-3, left). Lastly, using the 2010 

Environmental Systems Research Institute (ESRI) Business Analysis data set for the 

Portland, Oregon area, establishments are pooled into comparable land-use categories 

(see Table 3-3, right). Note that some classifications have more than one land-use 
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category (LUC), even then a generalized examination of how land use is represented in 

this dataset as a whole.  

Table 3-1 ITE’s 9th Edition Handbook (2014) Retail and Service Land-use categories Crosswalk with 
the 2007 North American Industry Classification System (NAICS) Codes (1 of 2) 

Land 
Use 
Code 

Category Land Use Name 2007 
NAICS 
Code 

Descriptive 
Used in Models13 

810 Retail Tractor Supply Store 42382 H,G 
811 Retail Construction Equipment Rental Store 532412 H,G 
812 Retail Building Materials and Lumber Store 4441 H,G 
813 Retail Free-Standing Discount Superstore 452111 G,S 
814 Retail Variety Store 45299 G 
815 Retail Free-Standing Discount Store 452111 G 
816 Retail Hardware/Paint Store 4441 G 
817 Retail Nursery (Garden Center) 44422 H,G 
818 Retail Nursery (Wholesale) 44422 H,G 
820 Retail Shopping Center 452111 G 
821 Retail Shopping Center - Christmas Time 452111 G 
823 Retail Factory Outlet Center 452111 G 
826 Retail Specialty Retail Center 452111 G 
841 Retail Automobile Sales 4411 H,G 
842 Retail Recreational Vehicle Sales 44121 H,G 
843 Retail Automobile Parts Sales 44131 G 
848 Retail Tire Store 44132 H,G 
849 Retail Tire Superstore 44132 H,G,S 
850 Retail Supermarket 44511 G 
851 Retail Convenience Market (Open 24 Hours) 44512 C 
852 Retail Convenience Market (Open 16 Hours) 44512 C 
853 Retail Convenience Market with Gasoline Pumps 44711 C 
854 Retail Discount Supermarket 44511 G 
857 Retail Discount Club 45291 H,G 
860 Retail Wholesale Market 45291 H,G 
861 Retail Sporting Goods Superstore 45111 G,S 
862 Retail Home Improvement Superstore 44411 H,G,S 
863 Retail Electronics Superstore 443 G,S 
864 Retail Toy/Children’s Superstore 45112 G,S 
865 Retail Baby Superstore 45112 G,S 

                                                 

13 Notes: C: Convenience or high generator dummy; H: Heavy goods dummy; G: Goods dummy; 

S: Superstore dummy; D: Drive-through dummy; R: Restaurant dummy; N: Not included in manuscript 

analysis of square footage, data mostly provided with independent variable “bays”.  
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Table 3-2 ITE’s 9th Edition Handbook (2014) Retail and Service Land-use categories Compared with 
the 2017 North American Industry Classification System (NAICS) Codes (2 of 2) 

Land 
Use 
Code 

Category Land Use Name 2007 
NAICS 
Code 

Descriptive 
Used in 
Models 

866 Retail Pet Supply Superstore 45391 G,S 
867 Retail Office Supply Superstore 45321 G,S 
868 Retail Book Superstore 451211 G,S 
869 Retail Discount Home Furnishing Superstore 4422 H,G,S 
872 Retail Bed and Linen Superstore 812331 G,S 
875 Retail Department Store 45211 G 
876 Retail Apparel Store 448 G 
879 Retail Arts-and-Crafts Store 45113 G 
880 Retail Pharmacy/Drugstore without Drive-Through Window 44611 D 
881 Retail Pharmacy/Drugstore with Drive-Through Window 44611 D 
890 Retail Furniture Store 4421 H,G 
896 Retail DVD/Video Rental Store 53223  
897 Retail Medical Equipment Store 42345 H,G 
911 Services Walk-in Bank 522  
912 Services Drive-in Bank 522 C,D 
918 Services Hair Salon 81211  
920 Services Copy, Print and Express Ship Store 5614 G 
925 Services Drinking Place 7224 R 
931 Services Quality Restaurant 7221 R 
932 Services High-Turnover (Sit-Down) Restaurant 7222 R 
933 Services Fast-Food Restaurant without Drive-Through Window 7222 C,D,R 
934 Services Fast-Food Restaurant with Drive-Through Window 7222 C,D,R 
935 Services Fast-Food Restaurant with Drive-Through Window 

and No Indoor Seating 
7222 C,D,R 

936 Services Coffee/Donut Shop without Drive-Through Window 7222 C,D,R 
937 Services Coffee/Donut Shop with Drive-Through Window 7222 C,D,R 
938 Services Coffee/Donut Shop with Drive-Through Window and 

No Indoor Seating 
7222 C,D,R 

939 Services Bread/Donut/Bagel Shop without  Drive-Through 
Window 

7222 C,D,R 

940 Services Bread/Donut/Bagel Shop with  Drive-Through 
Window 

7222 C,D,R 

941 Services Quick Lubrication Vehicle Shop 811191 N 
942 Services Automobile Care Center 8111  
943 Services Automobile Parts and Service Center 8111  
944 Services Gasoline/Service Station 4471 N 
945 Services Gasoline/Service Station with Convenience Market 44711 C 
946 Services Gasoline/Service Station with Convenience Market 

and Car Wash 
44711 N 

947 Services Self-Service Car Wash 811192 N 
948 Services Automated Car Wash 811192  
950 Services Truck Stop 447  
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For some of ITE’s land uses, the sample size is relatively high (Shopping Center, 

LUC 820, N=288). For others, it is very low (Hair Salon, LUC 918, N=1). Wholesale 

trades is generally underrepresented in ITE’s data, compared with what is observed in 

Portland, Oregon (15% versus 3% for land-use categories and <1% in observations, 

respectively), as are land uses that fall under “Repair and Maintenance” and “Personal 

and Laundry Services” (21% versus 10% and 1%). Meanwhile, retail land uses are 

overrepresented (26% versus 37% and 33%). 

It would benefit the user of these data to explore how these baseline suburban data 

are representative of different contexts and establishments of different sizes. ITE’s data 

represents mostly suburban land uses, as the institute reminds us in the Handbook (2014). 

Is this data consistent with similar economic industries across contexts? Are these data 

representative of the size of each land use (e.g., square footage, average number of 

employees)? One is not able to answer these questions with the given data as all location 

information is masked.   
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Table 3-3 Distribution of Retail and Service Land Uses and Observations as Provided in ITE’s 9th 
Edition (2014), Compared with Counts of Firms by Industry in Portland, Oregon  

2007 North American Industry Classification 
System (NAICS) Codes 2 

ITE 9th Edition Handbook  ESRI 2010 
Business Analyst 

(Firms) Counts 1 Proportion (%) 

LUC Obs LUC Obs Counts % 

Wholesale Trade (42)   2 5 3% 0% 3,790 15% 
Merchant Wholesalers, Durable Goods 2 5 1% 0% 2,897 11% 
Merchant Wholesalers, Nondurable Goods 0 0 0% 0% 893 3% 

Retail Trade (44)   25 437 37% 33% 6,683 26% 
Motor Vehicle and Parts Dealers 5 71 7% 5% 1,048 4% 
Furniture and Home Furnishings Stores 2 26 3% 2% 646 3% 
Electronics and Appliance Stores 1 3 1% 0% 735 3% 
Building Material and Garden Equipment and 

Supplies Dealers 5 82 7% 6% 1,009 4% 
Food and Beverage Stores 4 103 6% 8% 1,261 5% 
Health and Personal Care Stores 2 41 3% 3% 603 2% 
Gasoline Stations 5 104 7% 8% 276 4% 
Clothing and Clothing Accessories Stores 1 7 1% 1% 1,105 4% 

Retail Trade (45)   17 505 25% 38% 2,997 12% 
Sporting Goods, Hobby, Book, and Music 

Stores 5 10 7% 1% 827 3% 
General Merchandise Stores 10 491 15% 37% 314 1% 
Miscellaneous Store Retailers 2 4 3% 0% 1,720 7% 
Nonstore Retailers 0 0 0% 0% 136 1% 

Finance and Insurance (52) 2 102 3% 8% 1,400 5% 
Credit Intermediation and Related Activities 2 102 3% 8% 1,400 5% 

Real Estate and Rental and Leasing (53) 2 9 3% 3% 528 2% 
Rental and Leasing Services 2 9 1% 1% 528 2% 

Administrative and Support and Waste 
Management and Remediation Services (56) 1 1 1% 0% 357 1% 
Business Support Services 1 1 1% 0% 357 1% 

Accommodation and Food Services (72) 11 274 16% 20% 4,496 18% 
Food Services and Drinking Places 11 274 16% 20% 4,496 18% 

Other Services (except Public 
Administration) (81) 7 9 10% 1% 5,273 21% 
Repair and Maintenance 5 7 7% 1% 2,244 9% 
Personal and Laundry Services 2 2 3% 0% 3,029 12% 

Total   67 1,342 100% 100% 25,524 100% 
1 These data represent the most common independent variable (square footage of gross leasable or gross 
floor area) and time period (PM peak hour of the adjacent street traffic). 
2 Land use codes (LUC) provided by ITE are aggregated into corresponding NAICS classifications 
which are shown in 2-digit and 3-digit classifications, with the exception of the category 5614.  
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Methods 

This portion of the study has two subsections describing the two related 

analyses. First, we explore the relationship between the age of the data and trip rates. 

Second, we consider the variation explained by ITE’s land-use taxonomy, versus a 

more parsimonious approach.  

To examine variation of the trip rates (counts per unit of independent variable) 

across age or land-use category, we must take into account the count-based nature of 

these data. For both the analyses of age and land-use categories, we transform vehicle-

trip rates using a natural log transformation (see Figure 3-2). The specifics of each 

analysis can be found in the following subsections.  

There are 14 independent variables provided across the 67 land-use 

categories—although not every land-use category includes every independent variable. 

There are also nine time periods. The distribution of observations for retail and service 

land uses across these variables and time periods is provided in Table 3-4. For 

simplicity, this analysis examines the vehicle-trip counts observed during the PM peak 

hour of the adjacent street traffic (generally, 4:00 PM through 6:00 PM), for 

observations measured by the square footage of gross leasable or gross floor area (see 

shaded values in Table 3-4)14. 

                                                 

14 Differences of Gross Floor Area (GFA), Gross Leasable Area (GLA), and Occupied Gross 

Leasable Area (OGLA) are subtle (Institute of Transportation Engineers 2014, 134). GFA includes the 
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Figure 3-2 Frequency Distribution of ITE's Handbook (2014) Retail and Service for (left) 
untransformed and (right) transformed using natural log (vehicle-trip counts per 1,000 square 

footage, PM peak hour of the adjacent facility)   

                                                 

sum of all areas of the building, while GLA is defined as the sum of all areas designated for tenant 

occupancy. GFA is equal to GLA except where open atriums or enclosed malls are included. Neither 

definition includes garage-parking areas. It is unknown if observations provided under GFA have 

atriums or enclosed malls. Most observations that use “gross leasable area” include shopping centers, 

LUC 820 and 821—typical rates (N=288) and rates during Christmas (N=5), respectively—as well as 

specialty retail center, LUC 826. Only one land use considered “occupied leasable area,” LUC 942, 

automobile care center. By measuring the “leasable” or “occupied leasable” area, shared space is 

ignored, deflating the trip rate. 
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Table 3-4 Observations of Vehicle-trip counts from ITE’s Handbook (2014) by Independent 
Variable and Periods 

 Time Periods 
  Weekday Saturday Sunday 

 Daily AM PM AM PM Daily Gen Daily Gen 
Independent 
Variables:   Gen. Gen. Adj. 

Street 
Adj. 

Street         

KSF Gross Floor 
Area 333 522 572 624 1042 199 429 149 125 

KSF Gross 
Leasable Area 170 4 3 87 295 102 89 71 36 

KSF Occupied 
Gross Leasable 
Area 0 5 5 5 5 1 0 1 0 

Acres 15 23 23 23 24 23 23 22 22 
Drive-In Lanes 2 19 26 18 85 0 26 0 0 
Employees 57 69 69 61 90 62 52 57 49 
Seats 24 30 44 35 63 24 27 24 17 
Service Bays 12 15 15 20 21 12 14 0 0 
Service Stalls 0 1 1 1 1 1 0 1 0 
Servicing 

Positions 1 1 6 1 6 1 1 1 1 
Vehicle Fueling 

Positions 10 65 83 71 112 3 7 3 0 
Wash Stalls 1 1 1 0 9 1 3 0 0 
AM Peak-hour 

Traffic on 
Adjacent 
Street 15 0 0 0 42 0 0 0 0 0 

PM Peak-hour 
Traffic on 
Adjacent 
Street 15 0 0 0 0 51 0 0 0 0 

Notes: Shaded area indicates the data selected for analysis. Gen: Generator; KSF: 1,000 square feet. 
Daily: 24-hour counts. Generator: Peak hour of the generator, highest hour of the daily/time period. AM, 
Adj Street: AM peak hour of the adjacent street traffic (Generally, 7:00 AM to 9:00 AM). PM, Adj. 
Street: PM, peak hour of the adjacent street traffic (Generally, 4:00 PM to 6:00 PM). 

                                                 

15 These independent variables (IV) include the “highest hourly volumes of traffic” during the 

given peak hour. They include the following land-use categories: 853, 854, 934, 937, 944, 945. When 

examining the relationship between counts and peak-hour traffic flow (linear regression with constant), 

these IVs are only significantly related for the land use 944 (Gasoline/Service Station). 
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Do rates vary by age of the data? 

In the first analysis, we test the relationship between the age of the data and the 

trip rate, hypothesizing that the trip rates do vary significantly with age. ITE’s 

Handbook notes several statistical tests used to examine and compare new and old 

data as submitted (“combinations of variation from averages, standard deviation 

expansion, clustering of recent data, R2, T-tests, and F-ratios” (2014, 7)). Only the 

outcomes of “banking industry land uses” age test—walk-in bank (LUC 911) and 

drive-in bank (912)—were reported; all pre-2000 data for either land uses were 

removed from the active database. Without further explanation, it is assumed that all 

tests were conducted with untransformed trip rates, which are likely to have non-

normal distributions. The tests conducted in this analysis examine the relationship 

between age of data and trip rates, transformed into a normally distributed variable.  

To control for the potential variation in trip rates across land-use categories, we 

consider only categories that have 50 observations or more, including: Free-Standing 

Discount Superstore; Free-Standing Discount Store; Shopping Center; Convenience 

Market with Gasoline Pumps; Home Improvement Superstores; Drive-in Banks; High-

Turnover (Sit-Down) Restaurant; Fast-Food Restaurant with Drive-Through 

Windows. For each land use, a single regression was estimated—regressing the 

transformed trip rate upon the independent variable and the age, described numerically 

here: 

ln �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝐾𝐾𝐾𝐾

� = 𝛽𝛽𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾 + 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜀𝜀, 
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where: 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the observed vehicle-trip count; 𝐾𝐾𝐾𝐾𝐾𝐾 is ITE’s independent 

variable 1,000 square feet of gross floor or leasable area; and 𝑙𝑙𝑙𝑙(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝐾𝐾𝐾𝐾𝐾𝐾) is the 

natural log transformation of the vehicle-trip rate (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝐾𝐾𝐾𝐾𝐾𝐾). The age of the data, 

𝐴𝐴𝐴𝐴𝐴𝐴, is measured in years since 2017 and was computed using the year of data 

collection, as provided in OTISS. The estimated parameters—𝛽𝛽𝐾𝐾𝐾𝐾𝐾𝐾 and 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴—are the 

estimated coefficients that represent the relationship between the square footage 

(𝐾𝐾𝐾𝐾𝐾𝐾) and the age of the data (𝐴𝐴𝐴𝐴𝐴𝐴) with the transformed trip rate, respectively.  

The elasticity describing the relationship between trip rates and age were then 

computed, considering the log-linear regression specification, as described here: 

𝜂𝜂 = 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴������. 

Do rates vary across land-use categories? 

 The second analysis examines the contribution of ITE’s land-use taxonomy to 

explaining variance in trip rates, compared with an aggregated categorization. The 

simplified categorization segments land uses into those that provide: (C) 

convenience/high-turnover services;16 retail that includes (H) heavy goods; and all 

other land uses. Additional land use characteristics were considered, but excluded due 

to (a) high correlation with the main dummy variables, or (b) did not provide 

substantial improvement in the explanation of variance. These characteristics include: 

                                                 

16 The convenience/high-turnover category was also negatively correlated with the size of the 

establishment. 
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general goods or retail that may require a bag to carry goods; superstore, categories in 

which the description was listed as a “superstore”;17 drive through, categories in which 

the description denotes a drive through; and restaurants, any land use that includes the 

selling of prepared food. All categorization considered (listed and denoted in Table 

3-1 and Table 3-2) represents a simplification to the ITE taxonomy, which includes 63 

different land-use categories for retail and service uses18. 

The purpose of this analysis is to examine the contribution of ITE’s extensive 

retail and service taxonomy and segmentation. Two types of tests were performed on 

transformed trip rates. First, an analysis of variance was conducted and the intraclass 

correlation (ICC) was computed. The ICC assesses the “proportion of the total 

variance of a variable that is accounted for by the clustering (group membership) of 

the cases” (Cohen et al. 2002, 537)—an indication of how much variance each land 

use categorization captures. However, these results compare the variation of vehicle-

trip rates captured by land use alone in a one-way analysis of variance ANOVA)—

without controlling for additional variation in trip rates captured by the size of the 

                                                 

17 Not every “superstore” category has a corresponding “non-superstore” category within the 

same economic function. For example, the taxonomy includes a “Tire Store” and a “Tire Superstore,” 

but no “Toy/Children’s Store” in comparison to the “Toy/Children’s Superstore.”  

18 ITE’s taxonomy actually includes 67 land uses. However, four of those uses (denoted “N” in 

Table 3-8) were not included in ITE’s Handbook under “square footage.” They are therefore dropped 

from this analysis. 
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establishment. Second, a series of ordinary least squares (OLS) regressions were 

estimated to examine the comparative contribution of (M1) ITE’s taxonomy and 

(M2b) the aggregated taxonomy, compared with the (M0) base case: no land use 

indicators. The three models can be described mathematically as follows:  

𝑀𝑀0: ln �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝐾𝐾𝐾𝐾

� = 𝛽𝛽0 + 𝛽𝛽𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾                                                                   +  𝜀𝜀 

𝑀𝑀1: ln �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝐾𝐾𝐾𝐾

� = 𝛽𝛽0 + 𝛽𝛽𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾 + 𝛽𝛽𝑙𝑙 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦𝑙𝑙                                     +  𝜀𝜀 

𝑀𝑀2: ln �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝐾𝐾𝐾𝐾𝐾𝐾

� = 𝛽𝛽0 + 𝛽𝛽𝐾𝐾𝐾𝐾𝐾𝐾 ∗ 𝐾𝐾𝐾𝐾𝐾𝐾                               + 𝛽𝛽𝐶𝐶 ∗ 𝐶𝐶 + 𝛽𝛽𝐻𝐻 ∗ 𝐻𝐻 +  𝜀𝜀 

Where, 𝛽𝛽𝑙𝑙 and 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦𝑙𝑙 are the estimated coefficient and corresponding 

dummy indicator for each land-use category, 𝑙𝑙 in the set of land-use categories{𝑙𝑙,𝑁𝑁 −

1 = 62}.19 The variables C and H indicate the convenience/high-turnover and heavy 

goods land uses, respectively. These variables corresponding with their estimated 

parameters: 𝛽𝛽𝐶𝐶 and 𝛽𝛽𝐻𝐻. For each of these equations, four metrics are computed to 

compare the contribution of each land-use taxonomy: (1) Adjusted R2, (2) Akaike 

Information Criterion (AIC), (3) Root Mean Square Error (RMSE), and (4) 

Normalized Root Mean Square Error (NRMSE). 

                                                 

19 One land use dummy indicator is excluded to provide a base case. Estimated coefficients, 𝛽𝛽𝑙𝑙, 

are interpreted as the change in transformed trip rate, as it compares to the base case indicator.   
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Results 

Vehicle-trip rates Have Decreased Significantly Over Time 

For all eight land uses observed, the age of the data significantly explained 

variation in the relationship with the trip rate (see Table 3-5 and Table 3-6).20 The 

relationships ranged from elasticities of 0.2 to 2.4% —indicating trip rates could be 

more or less elastic depending on the land use. Findings from this portion of the 

analysis should be interpreted with caution—the discussion section provides more 

context for these results.  

                                                 

20 For almost every land use tested, a non-linear component in this relationship was also 

significant—an indication of diminishing slope describing the relationship between age and trip rate. 

This is not included in the regressions provided; reasons are discussed in the discussion. 
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Table 3-5 Estimating Trip Rate (Natural Log Transformation) by Square Footage and Age, table 1 of 2 

Land Use Code 813 815 820 853 

 Free-Standing Discount 
Superstore 

Free-Standing Discount 
Store Shopping Center Convenience Market with 

Gasoline Pumps 
Variable Coef. SE p Coef. SE p Coef. SE p Coef. SE p 
1,000 Square Feet 
(KSF) 0.01 0.00 0.00 *** 0.01 0.00 0.00 *** 0.00 0.00 0.00 *** 0.48 0.07 0.00 *** 
Age (Years from 2017) 0.02 0.01 0.00 *** 0.03 0.01 0.00 *** 0.05 0.00 0.00 *** 0.12 0.01 0.00 *** 
                                  
Elasticity of Age 
Coefficient 0.2 0.6 1.7 2.4 
                                  
Observations (N) 86 53 288 69 
Sources (M) 17 19 101 15 
N/M 5.1 2.8 2.9 4.6 
R2 0.97 0.95 0.85 0.93 
Adjusted R2 0.97 0.95 0.85 0.93 
Residual Std. Error 0.26 0.37 0.68 1.06 
F-Statistic 1257.10 467.80 819.42 452.10 
Summary Statistics: Mean (Standard Deviation) Minimum - Maximum         
Trip Rate (vehicle trips 
per KSF) 4.3 (1.1) 1.8 - 7.4 5 (1.4) 2.5 - 9.2 6.3 (4.3) 1.1 - 32.3 62.3 (48.9) 13.7 - 296.8 
Age of data 10.4 (4.6) 6 - 22 20.2 (4.5) 9 - 39 32.1 (10.5) 5 - 52 19.7 (8.5) 7 - 33 
Notes:  
Dependent Variable: Natural log of vehicle trip ends per 1,000 square feet of gross floor or leasable area, PM peak hour of the adjacent street 
traffic 
KSF: 1,000 Square Feet of Gross Floor Area or Leasable Area 
Coef: Estimated Coefficient; SE: Standard Error; t: t-statistic; p: p-value 
*p<0.1; **p<0.05; ***p<0.01 
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Table 3-6 Estimating Trip Rate (Natural Log Transformation) by Square Footage and Age, table 2 of 2 

Land Use Code 862 912 932 934 

 Home Improvement 
Superstore Drive-in Bank High-Turnover (Sit-

Down) Restaurant 
Fast-Food Restaurant with 
Drive-Through Windows 

Variable Coef. SE p Coef. SE p Coef. SE p Coef. SE p 
1,000 Square Feet (KSF) 0.00 0.00 0.00 *** 0.18 0.04 0.00 *** 0.06 0.04 0.13  0.29 0.06 0.00 *** 
Age (Years from 2017) 0.03 0.01 0.00 *** 0.22 0.02 0.00 *** 0.08 0.01 0.00 *** 0.09 0.01 0.00 *** 
                                  
Elasticity of Age 
Coefficient 0.4 2.2 1.5 2.3 
                                  
Observations (N) 51 99 58 131 
Sources (M) 9 15 30 31 
N/M 5.7 6.6 1.9 4.2 
R2 0.85 0.92 0.77 0.90 
Adjusted R2 0.84 0.92 0.76 0.90 
Residual Std. Error 0.36 0.89 1.13 1.09 
F-Statistic 133.35 565.20 93.49 605.13 
Summary Statistics: Mean (Standard Deviation) Minimum - Maximum 
Trip Rate (vehicle trips 
per KSF) 2.4 (0.8) 1.2 - 4.3 25.8 (17.7) 2.9 - 110.4 11.4 (9.6) 0.9 - 62 37.3 (23.9) 8 - 165 
Age of data 13.3 (5.9) 6 - 34 10 (2.6) 6 - 16 18.1 (8.3) 7 - 40 24.7 (8.4) 7 - 47 
Notes:  
Dependent Variable: Natural log of vehicle trip ends per 1,000 square feet of gross floor or leasable area, PM peak hour of the adjacent street traffic 
KSF: 1,000 Square Feet of Gross Floor Area or Leasable Area 
Coef: Estimated Coefficient; SE: Standard Error; t: t-statistic; p: p-value; *p<0.1; **p<0.05; ***p<0.01 
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Table 3-7 Ordinary Least Squares Regression Analysis Results, table 1 of 2 

Model: Reference M0 M2 (a) M2 (b) 
Specification: Intercept only Intercept + KSF Intercept + KSF + C Intercept + KSF + C + H 

 
Coef. S.E. p-

value 
 Coef. S.E. p-value  Coef. S.E. p-

value 
 Coef. S.E. p-

value 
 

Constant 2.14 0.06 0.00 *** 2.44 0.06 0.00 *** 1.62 0.06 0.00 *** 1.80 0.06 0.00 *** 
KSF     0.00 0.00 0.00 *** 0.00 0.00 0.00 *** 0.00 0.00 0.00 *** 
C1         1.44 0.08 0.00 *** 1.62 0.08 0.00 *** 
H1             -0.92 0.10 0.00 *** 
Observations 317 317 317 317 
R2 0.00 0.23 0.65 0.72 
Adjusted R2 0.00 0.23 0.65 0.72 
Residual Std. 
Error 1.104 (df=316) 0.968 (df=315) 0.653 (df=314) 0.584 (df=313) 

F Statistics  95.971*** (df = 1; 315) 294.613*** (df = 2; 314) 272.637*** (df = 3; 313) 
Notes: 
* p-value < 0.1; ** p-value < 0.05; *** p-value < 0.01 
Coef: Estimated Coefficient; SE: Standard Error; t: t-statistic; p: p-value 
Dependent Variable: Natural Log of Vehicle Trips per 1,000 Square Feet of Gross Floor or Leasable Area 
KSF: 1,000 Square Feet of Gross Floor or Leasable Area 
LUC: Institute of Transportation Engineers’ Trip Generation Handbook Land-use categories 
C: Convenience or High-Turnover Land Uses (see Table 3-1 and Table 3-2)  
H: Heavy Goods Land Uses (see Table 3-1 and Table 3-2) 
1 Dummy Variable 
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Table 3-8 Ordinary Least Squares Regression Analysis Results, table 2 of 2 

Model: M1 Coef. SE t p-value  
Constant 0.66 0.50 1.31 0.19  
KSF -0.00 0.00 -2.57 0.01 ** 
LUC1                  811 -0.64 0.58 -1.12 0.27  

897 -0.43 0.71 -0.61 0.54  
810 -0.23 0.58 -0.40 0.69  
918 -0.28 0.71 -0.40 0.69  
869 -0.12 0.54 -0.23 0.82  
875 0.44 0.71 0.62 0.54  
862 0.27 0.51 0.52 0.61  
841 -0.03 0.71 -0.04 0.97  
842 0.40 0.61 0.65 0.52  
861 0.39 0.61 0.64 0.52  
866 0.15 0.71 0.21 0.84  
857 0.79 0.54 1.46 0.15  
813 0.91 0.50 1.81 0.07 * 
815 0.83 0.58 1.44 0.15  
820 0.84 0.52 1.62 0.11  
814 1.22 0.52 2.37 0.02 ** 
911 1.29 0.58 2.24 0.03 ** 
920 1.35 0.71 1.92 0.06 * 
880 1.43 0.58 2.48 0.01 ** 
854 1.28 0.56 2.29 0.02 ** 
932 1.17 0.52 2.27 0.02 ** 
881 1.51 0.52 2.88 0.01 *** 
850 1.48 0.52 2.87 0.01 *** 
950 1.97 0.58 3.42 0.00 *** 
940 2.02 0.71 2.86 0.01 *** 
912 2.33 0.50 4.62 0.00 *** 
934 2.50 0.52 4.79 0.00 *** 
937 2.88 0.52 5.58 0.00 *** 
853 2.94 0.51 5.77 0.00 *** 
935 2.86 0.56 5.13 0.00 *** 
945 4.19 0.58 7.28 0.00 *** 

Observations 317 Residual Std. Error 0.498 (df=284) 
R2 0.82 F Statistics 39.625*** (df = 32; 284) 
Adjusted R2 0.80    
Notes: See Table 3-7. The basecase for LUC is 860. 
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Little is Gained from Extensive Taxonomy 

In this section, we compare the relative contribution of each taxonomy (ITE 

versus aggregated) by examining the amount of variation captured by each approach to 

land use categorization. Due to the findings in the previous subsection—that age is 

significantly related to the trip rate—only recent data collected is explored in this section 

(age of less than 10 years). The complete results from the regression analysis in Table 3-7 

and Table 3-8. While there is a significant improvement between the aggregated 

taxonomy and ITE’s taxonomy21, it is the extent of this improvement that is evaluated in 

this section. 

Based on the ANOVA analysis, the intraclass correlation (ICC) for the aggregated 

categorization (two dummies indicating convenience/high-turnover land uses and land 

uses supplying heavy goods) was approximately 97% that of the ICC for ITE’s taxonomy 

(see Table 3-9). These results suggest that the aggregated categorization capture nearly 

all the variation captured by the more detailed taxonomy.  

  

                                                 

21 Extra sum of squares test between nested models M1 and M2b: F-statistic = 5.0 (df: 313, 284); 

p-value < 0.001. 
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Table 3-9 Intraclass Correlation (ICC) Comparing Two ANOVA: ITE’s Land-use Taxonomy Versus 
Aggregated Taxonomy 

Categories ICC 
Aggregated 

(C and H Dummies,  
3 categories total) 

0.787 

ITE’s Taxonomy  
(32 categories) 

0.810 

Notes: 
For ITE’s Taxonomy and Aggregated 
Categories, see Table 3-1 and Table 3-2. 
C: Convenience or High-Turnover Land 

Uses (see Table 3-1 and Table 3-2)  
H: Heavy Goods Land Uses (see Table 

3-1 and Table 3-2) 

The interpretation of results from the OLS regression were similar (see Table 

3-10). Comparing the performance of model M1 (ITE’s Land-use taxonomy) with M2 (b) 

(aggregated taxonomy), we observe only a small improvement in the more extensive 

categorization, compared to the reference (intercept only) model. It is also worth noting 

that the largest improvement in performance for the aggregated categorization approach 

resulted from the Convenience/high-turnover dummy (C)—improving the adjusted R2 

and AIC by 0.42 and 248 (respectively) from the baseline M0 model. Comparing the 

addition of the Heavy goods dummy (H), an additional improvement of only 0.07 in the 

adjusted R2 and 71 of AIC respectively compared with only the Convenience dummy 

(M2 (b) versus M2 (a). As mentioned previously, other variables were tested and 

excluded in this section due to limited model improvement or no significance (see Table 

3-1 and Table 3-2 to identify these categories).  

Depicted graphically, the relationship between the transformed dependent and 

independent variables (vehicle trips and square footage, respectively) are relatively linear 
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(see Figure 3-3). The relative difference between convenience land uses and heavy goods 

is observably higher and lower, respectively.  

Table 3-10 Ordinary Least Squares Regression of Vehicle-trip Rates for (M1) ITE’s Land-use 
taxonomy versus (M2) Aggregated Taxonomy 

Models Specification Adjusted 
R2 

Alkaike 
Information 

Criterion 
(AIC) 

RMSE NRMSE 
Number of   
Land-use 
categories 

Reference Intercept --- 966 1.10 0.20 None 
M0 Intercept + KSF 0.23 883 0.97 0.17 None 
M1 Intercept + KSF + LUC 0.80 491 0.47 0.08 32 
M2 (a) Intercept + KSF + C 0.65 635 0.65 0.12 222 
M2 (b) Intercept + KSF + C + H 0.72 564 0.58 0.10 322 
Notes: 
Dependent Variable: Natural Log of Vehicle Trips per 1,000 Square Feet of Gross Floor or Leasable 

Area 
KSF: 1,000 Square Feet of Gross Floor or Leasable Area 
LUC: Institute of Transportation Engineers’ Trip Generation Handbook Land-use categories 
C: Convenience or High-Turnover Land Uses (see Table 3-1 and Table 3-2)  
H: Heavy Goods Land Uses (see Table 3-1 and Table 3-2) 
RMSE: Root Mean Squared Error 
NRMSE: Normalized Root Mean Squared Error 

While other characteristics may help to explain some additional variation in this 

relationship of several alternative dummy variables—representing any goods, 

superstores, drive-through, or restaurants—did not result in substantial improvement in 

the performance of the model, and often did not result in estimated coefficients indicated 

as significantly different from zero. That said, there are significant costs associated with 

extensive segmentation of dataset.  Any reasoning or conclusion to adopt complex versus 

aggregated taxonomies, therefore, should be a decision that weighs the costs with the 

benefits.

                                                 

22 Number of dummies plus the base case category. 
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Figure 3-3 Observations for all Retail and Service Land Uses in ITE’s 9th Edition Manual (2012) by Aggregated Taxonomy (PM Peak Hour of the 
Adjacent Street Traffic, 4:00 PM to 6:00 PM) 

77 
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The Costs of Segmentation Are High 

Encouraging an overly refined segmentation of data—particularly one that has not 

been evaluated for performance—has a cost associated with its upkeep. If we require a 

more adequate sample of 4 observations per category—the sample size required to 

provide a regression in ITE’s Handbook (2014, 23)—and if we were to require data be 

decommissioned and replaced every 10 years, ITE’s existing taxonomy would require 

approximately 268 retail and service observations (67 categories). Assuming the cost of 

each data point ranges between $8,000 to $10,000—an estimate derived from two larger 

studies that collect infill data23—the cost of filling gaps in this simplified taxonomy range 

from USD$2.1-2.7 million dollars. This cost estimate includes on retail and service land 

uses during the PM peak hour. Additional time periods would increase these cost 

estimates (e.g., AM peak or daily counts). Other commercial land uses—such as office 

building or services typically reserved for office building structures—as well as 

residential, industrial, warehousing, recreational, ports, would require additional costs. 

Additionally, this cost estimate also does not consider the need to control for 

different urban contexts, which may require additional data collected from place types 

beyond the suburban data analyzed in this manuscript. Collecting data from multiple 

place types may increase the costs of data collection three or four times over, as a 

minimum. Given the slow decline in donated data in the past (see Figure 5-1 in Chapter 

                                                 

23 From conversations with Washington, DC Department of Transportation (2015) and estimates 

derived from Portland State University studies (2012-2017). 
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5), one might argue that an increased investment in collecting and donating data may be 

unreasonable, albeit more likely if ITE were to remove the approximate 95% of data that 

were not collected within the past 10 years (see Figure 5-1). 

A call for strategic sampling complicates this cost, but may actually improve the 

usefulness of data collected. Currently, these data are provided by donation, meaning that 

the majority of the data24 are provided by one-off studies, not typically organized or 

designed in relation to all other studies. This implies that the cost of data collection is 

placed on the need to collect data in the first place. The estimate for cost per data 

collection was estimated from larger studies that collected data at dozens of locations 

within a given region—leveraging the fixed costs of study design and the time it takes to 

prepare each data collection.  

Discussion 

Perhaps the most arresting issue uncovered during this analysis is the inability to 

analyze the representation of these data in more detail. As discussed previously, the 

masking of location information linked to individual observations—and the inability to 

link repeated observations provided across multiple time periods or independent 

variables—inhibits the ability of the analyst to consider the contexts from which these 

data were collected. In this manuscript, the author explores the representation of retail 

                                                 

24 ITE does not currently released information describing who donated the data and how data 

collection was funded. However, it does provide citations connecting land use data with donated study 

reports. What proportion of data are provided by each study is indeterminable.  
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and service land uses in these data sets—comparing the distribution of ITE’s 9th edition 

data (2012) with that within a single region (Portland, Oregon) using the industry 

classification codes to categorize and compare ITE’s observed data with the proportion of 

firms. We could not explore: the representation of size of establishments compared with 

national distributions (Is there a bias toward large establishments?); the correlation with 

the age of the data and region (Is there a trends of data collections within metropolitan 

areas across time?); are these data truly representing suburban, single land use, locations 

with free and unlimited parking and little to no walking, biking, or transit (Are all 

suburban areas created equal?). 

The findings suggest age significantly explains variation in trip rates within the 

eight retail and service land uses with more than 50 observations. This does not imply 

causality. It is important to note that the data within each land use were not completely 

independent. The donated sources for these data provided between 1.9 and 6.6 

observations per donation source on average. This significance may be tied to some trend 

in the way the data were collected nationally over the past six decades. Without context 

for each observation, it is difficult to say any more about this relationship, and following 

from this, to adjust or control these rates accordingly. If rates accommodated this 

observed deflation, are we adjusting for age? Or sampling issues correlated with temporal 

changes in policies or the demand for these data? 

If ITE cannot provide location information, they should provide a better 

descriptive and quantitative understanding of what these baseline data represent—and 

guidance on how to control for these differences—particularly for characteristics that 
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may lead to variation in the observed behavior identified in the literature. That includes, 

but is not limited to: 

• Built environment characteristics, e.g., diversity, density, design 
measures(Ewing and Cervero 2010);  

• Demographics of the surrounding area and the customer base; 
• Region, spatial structure, and location within the region;  
• Demand management practices; 
• Age of the data, and corresponding characteristics, such as the price of gas; 
• The date of data collection, and corresponding characteristics, such as 

temperature or precipitation; and  
• Access to, and the cost of, alternative modes. 

Provided that the data existing in this database are not too old, post-processing 

this information can only increase the usefulness and relevancy of these commonly used 

data. If this information is unable to be found (i.e., if the data are not too old to collect 

and identify the location- and data collection-specific characteristics), the decision to 

include these data in applications becomes an ethical one. As ITE notes in their 3rd 

edition Handbook, “an example of poor professional judgment is to rely on rules of 

thumb without understanding or considering their derivation or initial context” (2014, 3). 

If masking the location information is to remain the standard in practice, the analyst must 

be able to consider the “initial context” of the data before they attempt to make use of it. 

Without this context—or the information necessary to understand the context—anyone 

who applies these data may be guilty of poor professional judgment. 

Conclusions 

Despite the limitations discussed in the previous section, this manuscript 

describes two major outcomes, both with implications that may tie directly to practice. 
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These two outcomes include: (1) older data correspond with significantly higher trip 

rates; and (2) ITE’s extensive land use categorization of retail and services is very 

expensive with very little statistical improvement over extremely aggregated 

segmentation.  

First, we address the significance of age. While the results point to higher vehicle-

trip rates for older data for all eight sufficiently sized land uses datasets, the lack of 

context for these data limit any ability to understand why this is the case. Overall travel at 

retail and service land uses may have declined over the years. Or perhaps, newer data 

may represent more urbanized suburban locations or more multimodal (less automobile-

oriented) regions or cultures—which may be inherently related to the demand for data 

improved or updated data in these locations. Since data are donated, perhaps data were 

collected purely because developers were expecting lower rates given the location of 

development? Perhaps data were tied to new trends in retailing or service that developers 

believed generated less traffic. Without detailed information about the context of each 

business and location studied, the relationship between age and vehicle-trip rates is 

arguably impossible to untangle.  

Second, we consider the findings that suggest aggregated land-use categories may 

provide similar accuracy for substantially less cost. For practice, aggregating these land-

use categories into something more manageable may mean aggregated fee or impact 

schedules. Agencies and developers alike often complain about the complexity of land-

use categories—particularly when estimation happens early in the development process. 

For many agencies, even a small change of use may trigger the reassessment of impacts, 



  83 

 

 

which makes a complex taxonomy less attractive to those who manage permitting. But 

there is also value in understanding the salient features of land use—the aspects of use 

that derive a change in observed behavior.  

For all stakeholders, understanding land use characteristics that correlate in 

changing behavior means that data are not unnecessarily segmented for the sake of 

perceived accuracy. Larger sample sizes may mean that other characteristics or variables 

that describe the context (e.g., built environment, accessibility, and demographics) 

identified as relating significantly to changes in behavior may be incorporated.  

Additionally, as agencies expand the scope of evaluation to multimodal metrics 

(e.g., mode share, bicycle or pedestrian level-of-service) with a desire for greater 

sensitivity for urban planning policy measures (e.g., density, mixed use), there will likely 

be a need to expand the scope of transportation impact data and methods. Strategically 

simplifying the taxonomy allows for room to innovate without overwhelming the user.  

But perhaps more importantly, even today practice is observing huge shifts in 

how transportation system users interact with land use and facilities. Huge shifts in the 

retailing landscape have already resulted in widespread use of telecommmerce, for 

example—some suggesting it to be to blame for the closing many late twentieth-century 

shopping malls. Furthermore, with the advent of many smart-cities initiatives, being open 

to alternative forms of data being developed and implemented across many agencies in 

the US may add more value to existing data, or better yet, more value to existing 

questions about how and when one evaluates and assesses impact and corresponding 

mitigations. With the emergence of autonomous or connected vehicle technology—and 
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the huge uncertainty tied to how and when that technology will take shape—will these 

data, and our corresponding methods, remain relevant for any number of these potential 

future scenarios? It seems that greater benefit may be had in developing flexible methods 

sensitive to policy outcomes (e.g., transportation demand management strategies, location 

efficiencies, affordable housing subsidies, area-wide impacts, zoning or other land use 

constraints or mechanisms) than extending the already extensive taxonomy.  
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CHAPTER 4 ACCESSIBILITY, INCOME, AND PERSON TRIP GENERATION: 

A MULTI-LEVEL MODEL OF ACTIVITY AT FOOD RETAIL 

ESTABLISHMENTS IN PORTLAND, OREGON 

Introduction 

When urban land is developed, proposed establishments must undergo a transportation 

impact analysis (TIA)—where the nearby transportation facilities are evaluated against 

the increased demand derived from the new development. In many jurisdictions, the data 

and methods used to evaluate impacts relies upon mostly suburban vehicle-trip rates 

(Institute of Transportation Engineers 2014). There have been recent efforts to improve 

the shortcomings and increase the applicability of the data and methods for urban trip 

generation studies used to understand the transportation impacts of new development. 

Recommended practice, for example, is encouraging a focus on person trips and 

multimodal data (Institute of Transportation Engineers 2014; Bochner et al. 2016). These 

efforts aim to increase the sensitivity of these methods to urban contexts (Clifton, 

Currans, and Muhs 2013; Ewing et al. 2011), and since data on person trips are not 

currently available in archived form for a variety of land uses and urban environments, 

most of the new methodologies are implemented as an interim solution that requires an 

adjustment of ITE Trip Generation vehicle-trip rates, with few exceptions (District 

Department of Transportation 2015).  

Because of this, a common assumption made when applying ITE’s Trip 

Generation Handbook (Institute of Transportation Engineers 2014) in urban settings is 

that average person-trip rates do not vary within a region. To date, nearly all existing 
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methods for estimating urban trip generation considers person-trip rates to be constant 

regardless of location attributes, e.g., (Institute of Transportation Engineers 2014; Ewing 

et al. 2011; Currans and Clifton 2015; Daisa et al. 2013; Bochner et al. 2011). The 

method assumes urban form relates only to mode share (and perhaps vehicle occupancy) 

estimated at a site level. This implies that an establishment in the Central Business 

District would have the same number of people walking through the door that a similar 

establishment in the suburbs, exurbs, or rural areas. Bid-rent theory, on the other hand, 

would suggest that areas with higher land rent prices, due to higher levels of accessibility 

and proximity to markets more attracted to the given land use, would also generate more 

person trips and therefore stand to attract a larger number of customers earning more 

sales, e.g., (Alonso 1964; Des Rosiers, Theriault, and Menetrier 2005; Benjamin, Boyle, 

and Sirmans 1990). In other words, why would developers pay more if they were not 

expected to obtain more customers, controlling for the price point of products and size of 

the establishment? Following this theory, we hypothesize that changes in accessibility to 

destinations, generators, and markets with varying incomes captured by land value are 

significantly related to variation in person-trip rates.  

 There are two major implications of applying the assumption of constant person-

trip rates in urban areas. First, the amount of non-automobile person trips generated at 

establishments in locations with higher accessibilities, or land rents, may be greatly 

underestimated—leading developers to under-plan and under-pay for high levels of 

transit, walking or bicycling traffic. Second, a direct mode share adjustment, which 

reduces a proportion of automobile traffic based on total mode share estimates, may be 



  87 

 

 

under-predicting the amount of automobile traffic due to significantly higher person-trip 

rates in more urban area-types. This manuscript will attempt to quantify the error in 

existing urban-focused methods to more accurately understand the influence of existing 

methods which ignore the principals of urban economics. 

At this point, urban context only considers the built environment. The socio-

economic effects on trip generation are largely ignored despite the fact that travel 

behavior theory and research recognize them as fundamental influences on transportation 

outcomes, e.g., (Mokhtarian and Chen 2004). Among these, income is considered one of 

the primary drivers of trip making and mode choice (Pas 1984). Although demographics 

such as income are provided as area-wide distributions from the American Community 

Survey, it has not been utilized on a widespread basis in transportation impact studies, 

with a couple of exceptions in vehicle trip estimation (Schneider, Shafizadeh, and Handy 

2015) and in estimating aspects of behavior at planned mixed-use developments, such as 

internal capture and mode share (Ewing et al. 2011).   

This manuscript aims to address these two shortcomings: (a) the assumption that 

person trips do not vary across similarly situated land uses with different accessibility, 

and (b) the role of socio-economics in trip productions and attractions at the 

establishment level. To do this, we utilize novel sets of data as a proxy for person trips—

transaction records at detailed temporal scales for two food retailing land uses: 

convenience markets and grocery stores in Portland, Oregon. First, we explore the 

implications of this common assumption—that person-trip rates do not vary across urban 

and suburban contexts—and the evidence that suggests it is invalid.  
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Background 

The basis of this assumption—that person trip generation is independent of urban 

contexts—lies in the use of vehicle-trip counts to estimate the total number of people 

visiting a site. With too few observations estimate person trips out right, the 

recommended guidelines suggest converting the plethora of vehicle trip data into 

estimates for person trips. The conversion of vehicle trips to person trips is made as 

follows, modified from the recommended guidelines (Institute of Transportation 

Engineers 2014): 

𝑃𝑃𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑉𝑉𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑉𝑉𝑉𝑉ℎ𝑂𝑂𝑂𝑂𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

Where 𝑉𝑉𝑇𝑇𝐼𝐼𝐼𝐼𝐼𝐼 are the vehicle-trip counts or rates obtained at standard ITE 

locations, or the “baseline” sites. The vehicle-trip rate can be calculated by dividing 

vehicle trips by the size of the establishment (e.g., square footage) to derive the counts 

per size. The variables 𝑉𝑉𝑉𝑉ℎ𝑂𝑂𝑂𝑂𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 are estimates of the 

average vehicle occupancy and automobile mode share to and from the baseline sites. 

Many of the data collected and provided by ITE were obtained through donated sources, 

sometimes decades previously when mode share and vehicle occupancy information were 

not likely collected. If this information was not provided, ITE recommends that the 

analyst assume some values that best represent what may have been observed in 

suburban, single-use contexts with free or unconstrained parking and little to no 

bicycling, walking, or transit use to and from the site (2014). For example, in this 
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manuscript we assume 95% automobile mode share and 1.1 people per vehicle for all 

land uses where this information is not provided.  

The analyst applies this converted person-trip rate to urban areas using the 

following formula, again modified from the recommended guidelines (Institute of 

Transportation Engineers 2014): 

𝑉𝑉𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑃𝑃𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑉𝑉𝑉𝑉ℎ𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 

Where the vehicle trip estimates for the development context, 𝑉𝑉𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒, is 

estimated using an average mode share and vehicle occupancy rate, 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

and 𝑉𝑉𝑉𝑉ℎ𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, approximated for the development context using alternative models 

estimated using intercept surveys (Institute of Transportation Engineers 2014) or tools 

developed from household travel surveys (Currans and Clifton 2015; Ewing et al. 2011). 

The user can also apply mode shares for other modes to estimate the person-trip rates of 

trip-makers traveling by alternative modes.  

There are two problematic issues that pertain to this process. First, the analyst 

does not actually know the actual context from which the baseline data were observed. 

Although ITE recommends only donating data collected from locations that meet these 

baseline conditions, the masking of location and context limit the analyst’s ability to 

make assumptions that reflect these baseline sites. Second, one assumes the person-trip 

rate calculated from suburban contexts would reflect a similar and unbiased person-trip 

rate for the same land uses in urban contexts—that the person trips observed in suburban 

locations are statistically similar to those observed in urban locations. This leads to the 
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question: how accurate is this converted estimate of person-trip rates compared with 

observed data? 

To investigate this, we examined data from multiple studies collected for 

residential and lodging, offices, retail, and service land uses collected from multiple 

studies (District Department of Transportation 2015; Clifton, Currans, and Muhs 2015; 

Schneider, Shafizadeh, and Handy 2015; Texas A&M Transportation Institute 2016; 

Western District ITE Chapter 2017; Fehr &Peers 2015). These data were collected in 

contexts ranging from suburban to high density urban, some with access to high-quality 

transit and some without. If the assumption holds—the converted person-trip rates will 

not be statistically different across contexts—the distribution of difference between the 

converted estimate and observed rates, taken as a percent of the estimated rates, should be 

normally distributed around zero.  

To compare the accuracy of the estimated person rates, we compute the root mean 

squared error (RMSE) a measure of the average deviation between the estimated and 

observed values. The RMSE is defined mathematically as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = ��𝑃𝑃𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�
2

𝑁𝑁

𝑖𝑖=1

𝑁𝑁�  

Where 𝑃𝑃𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is the rates of person trips estimated by ITE’s converted 

vehicle-trip rates for every observation, 𝑖𝑖 within the set of observations totaling 𝑁𝑁, and 

𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the observed person-trip rate for each observation, 𝑖𝑖. The scale of the values 

on RMSE vary somewhat depending on the range of observed values, so it is sometimes 
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useful to also compare a normalized version of RMSE (or NRMSE) which can be defined 

mathematically as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
∑ �𝑃𝑃𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 − 𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖�

2𝑁𝑁
𝑖𝑖=1 𝑁𝑁⁄

𝑀𝑀𝑀𝑀𝑀𝑀�𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖� − 𝑀𝑀𝑀𝑀𝑀𝑀(𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜,𝑖𝑖)
 

For each of the four land uses, these accuracy measures (RMSE and NRMSE) 

were computed for AM and PM observations (where available)—the peak-hour rate 

being defined as the maximum hour of person traffic at establishments during the peak of 

the adjacent street, most often defined as 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM. 

The largest discrepancy between the predicted and actual rates is observed in the retail 

and service land uses, part of which is controlled for by the normalization of the 

discrepancy with the range of observed values.  

Table 4-1 Accuracy (RMSE and NRMSE) of ITE's Converted Person-trip rates Compared with 
Observed 

 AM Peak Hour5 PM Peak Hour5 

 RMSE NRMSE Sample RMSE NRMSE Sample 
Residential/Lodging1 0.098 0.068 58 0.078 0.054 58 
Office2 0.233 0.186 24 0.335 0.173 23 
Service3 --- --- 0 2011.876 8.608 58 
Retail4 229.184 7.376 15 579.407 4.731 60 
NOTES: 
1ITE Land Use Codes: 220, 230, 222, 223, 232, 310 
2ITE Land Use Codes: 710 
3ITE Land Use Codes: 925, 932, 936 
4ITE Land Use Codes: 850, 890, 880, 816, 851, 869, 820, 867, 530, 522  
5The peak hour is measured during the peak of the adjacent street traffic, generally 7:00 AM to 9:00 AM 
and 4:00 PM to 6:00 PM. 

 

What these estimates do not show, however, is the direction of this error. A heavy 

bias in one direction or the other would mark a tendency to overestimate or 

underestimate. While the conversion method assumes all contexts produce similar rates 
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compared with suburban contexts, theories of urban economics would suggest higher 

person-trip activity at establishments in areas with higher accessibility—or urban 

contexts (this topic is explored in detail for the remainder of this manuscript). With 

higher trip rates in urban contexts, we aim to examine the discrepancy of predicted values 

(compared with observed) such that one identifies how much higher these rates may be 

compared with the estimated values, as defined below: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑒𝑒𝑒𝑒 𝑇𝑇ℎ𝑎𝑎𝑎𝑎 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
𝑃𝑃𝑇𝑇𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑃𝑃𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝑃𝑃𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 

This value was computed for each observation and plotted against the size of each 

establishment or development (see Figure 4-1 and Figure 4-2)—the same as used to 

estimate ITE’s vehicle and converted person-trip rates. Noticeably, the probability that 

these estimates under-predict total trip-maker activity is more heavily biased in retail and 

service land uses—compared with residential/lodging and office uses. While some retail 

and service estimates over-predict person trips for every observation, the majority 

severely under estimate person trips. It is likely that these locations in urban areas serve 

high populations of pedestrians. By converting ITE’s vehicle-trip rates using the standard 

assumptions, one ignores that the vast majority of these person trips are likely capturing 

walking trips to and from retail and service in more accessible areas. As some agencies 

are beginning to require the evaluation of pedestrian facilities during development review 

(as well as cycling and transit) in the form of multimodal level-of-service measures or 

person delay, the extreme under estimation of person trips ignores these kinds of trips 
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which, in urban contexts, likely make up additional pedestrian trips leveraging the higher 

accessibility. 

It is this discrepancy that we explore in this manuscript, specifically at retail 

locations. First, the literature that may provide guidance or explanations as to why this 

error exists is examined. Second, study setup is designed by examining the data and 

methods used to assess this assumption—hourly transactions counts collected at 13 

grocery stores and 80 convenience market establishments spread across the Portland, 

Oregon metropolitan region, aggregated into weekly, daily, and peak-hour transaction 

count. Lastly, the results are explained and implications discussed in the conclusions. 
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Figure 4-1 How Much Higher are the Observed Person-trip rates Compared to Rates Estimated 
Using ITE’s Converted Rates: (a) Residential and (b) Office 
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Figure 4-2 How Much Higher are the Observed Person-trip rates Compared to Rates Estimated 

Using ITE’s Converted Rates: (a) Service and (b) Retail 
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Literature 

To examine this question in the literature, three aspects of the literature are 

investigated: travel-demand modeling and travel behavior; urban economics and spatial 

structure; and decisions regarding firm location. Within these areas of study, we first 

explore whether the literature has examined attraction-based person trip generation 

(focusing on non-household travel activity). We then examine theories of bid rent to 

establish a basis for this research. Lastly, we examine literature that explores how and 

why developers locate firms within a region. 

Travel-demand modeling and Travel Behavior Literature 

Within the literature of travel-demand modeling, research that has established 

person trip generation rates at food retailing land uses, particularly those that examine 

how rates vary across the region were targeted. There are three major limitations of the 

travel behavior—land use research that allow one to investigate how activity at retail 

establishments vary across the urban landscape: (a) the limited number of studies 

focusing on overall person-trip demand or person-trip frequency, (b) the countless efforts 

focused on defining the built environment and behavior from the trip-maker’s household 

location, and (c) the exclusion of socio-economic information in the definition of urban 

context. While the aim of this paper is to focus on person trip generation, these 

limitations extend to aspects of estimating mode shares, trip lengths, vehicle occupancy, 

ownership and parking.  
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For the first limitation, we found few other studies have examined the influence of 

overall person-trip frequency variation, instead emphasizing a mode-specific trip 

frequency or trip length. Trip frequency and trip rates receive little, if any, attention in 

travel behavior research, especially at commercial establishments. Studies of person-trip 

frequency require an examination of the overall derived demand for activities at 

destinations and the corresponding trips made to reach them, but this is often missing 

from land use—travel behavior analyses which focus on mode-specific demand (Crane 

1996). If trip rates are evaluated, measures are often circumscribed to automobile use in 

an effort to understand how urban form influences automobile dependence, (Ewing and 

Cervero 2010), and more recently, attention in this area has ignored trip rates altogether, 

instead focusing on automobile distance traveled (Ewing and Cervero 2010; M. Boarnet 

2011). Without an examination of overall person-trip frequency or demand at commercial 

establishments, one is left with studies focusing on its mode-based components and the 

relative influences that relate to an increase or decrease in travel by either walking, 

biking, automobile, or transit—but rarely evaluated simultaneously, e.g., (Guo, Bhat, and 

Copperman 2007). 

A second limitation is the strong emphasis in research focusing on a household-

level unit of analysis that is prominent in nearly all travel behavior research to date. Since 

much of travel behavior research utilizes household travel surveys, few have investigated 

the influence from an establishment-based perspective, testing influences of 

environmental characteristics on travel. Alternatively, some studies focus on household 

trip frequencies to specific land uses within generally defined areas (Handy 1996). Travel 
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collected from the household’s home-location perspective leaves too few non-work trips 

observed at any one commercial establishment, preventing any investigation of 

establishment-based evolution in the variations in terms of trip counts. Fortunately, 

because these household-based surveys capture travel to various locations across a 

region, several more recent studies have used these surveys to attach relative differences 

between changes in behavior in terms of mode choice (Currans and Clifton 2015; Ewing 

et al. 2011), vehicle occupancy (Ewing et al. 2011), and trip length distributions (Ewing 

et al. 2011). Although interest recently has arisen in examining the built environment 

impact at the destination or establishment end of the trip, the emphasis has largely been 

on local accessibility, such as activity densities or connectivity within a half-mile area 

(Clifton, Currans, and Muhs 2015; Currans and Clifton 2015; Schneider, Shafizadeh, and 

Handy 2015).  

And third, evidence strongly suggests that socioeconomic influences significantly 

affect travel behavior, e.g., (Mokhtarian and Chen 2004). However, few trip generation 

studies have incorporated income or other characteristics of the trip maker or the area 

surrounding the establishment (Schneider, Shafizadeh, and Handy 2015; Ewing et al. 

2011). Yet in regional travel-demand modeling, income—or automobile ownership (as a 

proxy)—and household size are often the only predictors used to estimate trip generation 

productions (Martin and McGuckin 1998). Inclusion of this information should be among 

the improvements being considered to transportation impact studies, but that has only 

rarely been the case (Schneider, Shafizadeh, and Handy 2015; Ewing et al. 2011).  
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To understand the variation in site-level activity, one needs to understand the 

overall demand at attractions such as retail establishments—absent of mode choice. Due 

to the limitations in the existing travel behavior research investigating overall people trip 

counts and frequency at commercial establishments, the theories of urban economics and 

spatial location decisions offer an alternative source for investigation.  

Urban Economics, Spatial Structure, and the Premium Paid for Greater Accessibility 

Theorists in urban economics have long evaluated the spatial structure of urban 

areas and the location decisions of firms (e.g., 6, 19, 20). For commercial establishments, 

economic theory (bid-rent theory) assumes that businesses and investors who opt to pay 

for higher land values in areas with higher accessibilities do so with the expectation that, 

in return, more customers will have access to their businesses.  

Accessibility, as described by Hanson (1959), integrates both the intensity and 

proximity of destinations reachable from a given location. In terms of characterizing the 

influence of accessibility on travel behavior, Handy (1992) argued that accessibility can 

be separated into two components: regional accessibility, defined by longer distances of 

less frequent trips one has to travel to reach more regionally located shopping centers 

with a wider range of goods; and local accessibility, defined by the shorter distances or 

more frequent trips on travels to less-centered, more-ubiquitously spread-out destinations 

with a smaller range of goods aimed at everyday shopping and convenience.  

While several researchers have studied the relationship between residential land 

value and accessibility (Srour, Kockelman, and Dunn 2002; Kockelman 1998; Iacono and 

Levinson 2012), it is perhaps more relevant to this study to focus on those that have 
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investigated the premiums paid by developers and business owners for locating in more 

accessible areas. Srour et al. (2002) studied commercial land value and found owners 

paid a premium to locate in areas with higher accessibility to retail and employment 

destinations, but paid less to live near residents. Although the meaning of the commercial 

land value analysis was not explicitly addressed in the paper, these findings suggest that 

there is added value for firms to locate near agglomerations of other commercial 

establishments and employment centers. Similar to the studies of residential land value, 

several authors have noted increases in commercial land value near transit stations (Anas 

1995; Cervero and Duncan 2002) and business districts (Cervero and Duncan 2002).  

These studies established a connection between accessibility, in terms of 

destinations and proximity, and land value. For commercial properties, this increased 

land value must be off-set by the rent of businesses locating on the property. Property 

managers set the rent according to the value of land and the potential success and 

variability of the business itself (Benjamin, Boyle, and Sirmans 1990). The work by Des 

Rosiers et al. (2005) separated the influences on shopping center rent into two 

dimensions: the economic potential of the center’s location—a combination of population 

and corresponding income within the center’s vicinity, and; the center attraction of the 

location—a gravity measure of population accessible to the retail location. The authors 

found that the economic potential of the location was a major contributor to rent, 

suggesting businesses pay a premium to locate near high-income residential areas. 

However, the central attraction of the location (population accessibility) appeared to have 
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a greater impact in the number of potential customers that came through the door, which 

in turn relates to higher rents paid.  

While these studies lend support for the alternative hypothesis that person-trip 

rates vary across urban contexts, other aspects of these studies may not translate directly 

to transportation impact studies. The temporal nature of these urban economic studies 

extends to quarterly or annual rent data (Des Rosiers, Theriault, and Menetrier 2005), or 

sometimes to the sale of property (Srour 2001). At the longest, transportation impact 

analyses observe a day of traffic, more often a single peak hour supplies the data for 

analysis. Furthermore, Dunkley et al. (2004) noted a positive and significant relationship 

between the size of food retail establishments and both density (persons per acre) and 

median household income. This may suggest that even if higher accessibility to people 

and income generates more trips, it may not necessarily result in higher levels of activity 

overall. Finally, management decisions at individual establishments may vary to optimize 

performance. In the next section, the methods and decisions used to optimize the 

management of food retailing establishments are explored. 

Firm Location Decision-Making 

The decision-making process that a firm uses to decide where to locate an 

establishment does not occur in a vacuum. As Hernandez et al. (Hernández, Bennison, 

and Cornelius 1998) revealed, firms have three main levels of location management: 

strategic, monadic, and tactical. The first occurs at the macro- and meso-level, where 

larger firms are more concerned with company-wide decisions of location. The monadic 

level, which may overlap the strategic level, comes to the fore as when the company 
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focuses on individual stores, as components of a larger network of market bases. At the 

monadic level, business take a micro-management approach. They address the individual 

markets of each of the establishments, identifying areas where businesses may be 

modified in name, product or appearance, or expanded (or not) to fit the needs of the 

nearby market. While larger spatial networking decisions are made at the strategic level, 

adjustments and refinements are monadic. At the tactical level, a company makes 

decisions about marketing and product management that reach out to the existing 

community to address their specific, tailored needs for varying products. At the tactical 

level, businesses offer loyalty cards or provide location-specific sales, adjusting the 

supply and demand of products to maximize the transactions for each store.  

While the theory of bid-rent suggests that businesses pay a premium for locations 

that will reward the owner with higher accessibility to customers (and their incomes), the 

location management from larger firms that organize many establishments in space 

across markets suggests that businesses also make micro-level decisions to refine the 

ability to capture their market. While firms locate businesses in a range of environments, 

they may tailor monadic and tactical decisions to maximize success in locations with less 

accessibility. If this is the case, variation in foot traffic might cause micro-level monadic 

or tactical decisions that may wash out benefits of locating in areas with high levels of 

accessibility to markets, especially in higher-income markets. 

Moreover, firms do not always address refined models that identify optimal 

accessibility when making location decisions. In a follow up survey, Hernández and 

Bennison (2000) identified nine techniques to assess location decisions, comparing both 
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the size of the firm (number of outlets) and type of business (type of product), as well as 

the type of technique(s) used for location decision making while participating in these 

three levels of location management. The results overwhelmingly show that 96% of 

businesses rely on experience to reflect decisions made, while 36-55% consider checklist 

or analogue techniques, 39-42% use cluster analysis, multiple regression, or gravity 

models, and fewer than 16% consider more technically advanced techniques (e.g., 

discriminant analysis, neural networks). Of companies that have fewer than 250 outlets—

which would include both businesses considered in this study—66% use between 1 to 3 

methods, and 25% use 4 to 6. Breaking out by sector, grocery store businesses 

overwhelmingly use experience as a technique for location decisions (used by more than 

75% of companies), but 51 to 74% of grocery businesses used more advanced techniques 

as well (e.g. Checklists, multiple regression, cluster, and gravity models). The survey 

results also indicated that all techniques identified were used by at least 25% of the 

grocery store respondents. While this suggests that the numerous techniques site 

managers may use to reach their target market customers may vary in complex ways, the 

timeline of transportation impact studies—often completed before building permits are 

even issued—may occur long before these managerial decisions are contemplated.  

Based on this literature review, we hypothesize that person-trip rates (the overall 

demand or people through the door) at commercial establishments will be greater at 

locations for which developers have paid a premium by consciously capitalizing on the 

benefits of location accessibility (Handy 1996) and proximity to varying income markets 

(Des Rosiers, Theriault, and Menetrier 2005). These differences, however, may not be 
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observable at the typical temporal scale of traffic impact analyses, evaluating either daily 

impacts or those during the peak hour of the generator itself (the establishment) or 

adjacent street. Because of this, three scales of evaluation will be tested: peak-hour, daily, 

and weekly transaction rates. The next several sections describe the data, methods and 

results used to evaluate this hypothesis. 

Data  

One major problem estimating person-trip rates is that there are so few data 

available that capture a wide range of local and regional contexts, for a period beyond an 

hour that allows us to understand the anticipated variation. While there are inherent 

differences between person-trip counts and transaction counts, which are addressed in the 

following subsection, the use of transaction data in this study allows us to examine the 

variation of overall store activity—a proxy for the overall transportation activity, person-

trip counts—to determine (a) if (and how much) variation exists, and (b) if so, the 

location measures that explain this variation. The data for this analysis was donated on 

request by two local partners—who asked to remain anonymous—providing 24-hour 

counts over one-to-five, seven-day periods for 84 (24-hour) convenience markets and 13 

grocery stores within a single region (Portland, Oregon). 

Transaction Data (Dependent Variable) 

As mentioned previously, there are distinct differences between “transaction 

counts” and “person-trip counts.” A person-trip count, as used in ITE’s recommended 

practice (Institute of Transportation Engineers 2014), is a general term that is often used 
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interchangeably with the more apt term “person-trip-end” count. We use them 

interchangeably in this manuscript for simplicity. Person-trip counts are defined as the 

number of people entering or leaving the study development within a given period. If 30 

people enter and exit a 2,500-square-foot convenience market within a PM peak hour (5-

6 PM, for example), the person trip (end) count is 60 person trips (30 entering and 30 

exiting). These counts are often expressed as person-trip rates controlling for the size of 

the development; in the case of convenience markets and grocery stores, this is typically 

square footage of gross leasable area (GFA) in thousands of square feet (SQFT). For the 

earlier example, the person-trip rate would be 24-person trip (ends) counts per 1,000 

SQFT of GFA.  

Transaction counts—aggregated by any length of time—reflect the number of 

sales transactions within each period the business is open. Similar with person-trip rates, 

transaction rates control for the size of each establishment—in this case, for parity, we 

also use GFA in 1,000 SQFT increments. For this purpose, we use transaction data as a 

means for understanding relative variation in overall levels of activity, not as a way of 

estimating overall trip rates. To consider this, one must understand the turnover of 

activity—the transaction is, after all, at the end of the activity—as well as the relative 

group size for every transaction estimates. In this initial analysis, we assume that all 

arrivals occur within the same day and week from which the transaction occurred. As we 

previously identified that average vehicle occupancy, a proxy for group size of 

automobile trips, considered at the trip end does not vary across urban context within a 

region for retail establishments (Currans and Clifton 2015), we assume that this holds for 
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relative measures of accessibility. The comparison of transaction counts as a proxy to 

person-trip counts is explored further in Appendix A. 

Contextual Characteristics of Developments (Independent Variables) 

As part of our hypothesis, we argue that businesses, particularly retail endeavors, 

opt to locate in areas with higher levels of accessibility and income—and pay a premium 

for doing so—so that they may attract higher rates of people walking through the door, 

particularly when controlling for price point of the goods within the establishment. To 

examine the variation of transactions across varying levels of accessibility, existing data 

are used to compute these measures (Table 4-2, and described numerically in Table 4-3). 

They act as proxy measures for more complex and computationally difficult accessibility 

measures (Bhat et al. 2001; El-Geneidy and Levinson 2006).  

Accessibility itself is broken down into a regional and a local component (Handy 

1992). To measure regional accessibility, we examined multiple measures of regional 

accessibility as defined in the Smart Location Database (SLDB), as well as a more 

general measure: distance to the central business district (CBD). Although these measures 

were all highly correlated (Pearson’s correlation of +0.96), the Regional Centrality Index 

considered the relative variation in destinations accessible, weighted by a travel-time 

decay function. Moreover, because it was calculated for all block groups in the United 

States, it lends itself well to repeated analyses in external regions. Due to the high 

correlation, both variables could not be included; instead, we selected the Regional 

Centrality Index to represent regional accessibility.  
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For local accessibility—a measure of walkable opportunities, both in terms of 

alternative destinations and generators of visitors—the gross population and employment 

density (per acre) at the block group level were measured. Since businesses are paying a 

premium for more centric, high regionally accessible areas, the average real market value 

of commercially zoned land per square foot, as well as alternative measures of 

accessibility correlated highly with activity density (Pearson’s correlation: +0.93). While 

competition—the number of substitutable businesses—plays a role in attracting higher 

(or lower) trip rates, the number of similar and potentially substitutable establishments 

within a ½ mile Euclidean buffer was highly correlated with activity density (Pearson’s 

correlation: +0.84). The measure of “competition businesses” and “value of commercial 

land” also corresponded (Pearson’s correlation: +0.88). Comparably, including all 

variables would introduce multicollinearity issues. Because of this, we select the most 

simply defined measure—the sum of population and employment densities—to represent 

local accessibility.   

Finally, to account for the accessibility of the establishments to the purchasing 

market, the area-wide (median) income of the block group of the establishment is 

considered. Traffic impact analyses—as well as other forms of site-level evaluation (e.g., 

impact fees, scaling/scoping of the project, rezoning)—are typically completed long 

before businesses occupy the development, and in many cases, developers intending to 

lease the space may not know who the tenants will be until long after the fees have been 

paid and the mitigations negotiated. Furthermore, if the intent of site-level mitigation is to 

account for travel to the destination in the future, predicting the potential consumer 
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market of development—sometimes several years before build out—and the 

corresponding customer behavior is a murky process, at best. Furthermore, do all types of 

people shop at all types of grocery stores? Likely not. And how can consumer markets be 

predicted when developers do not yet know the tenants for their commercial 

developments? This is one of the main limitations of accounting for demographic effects 

at non-residential or office development. And while this topic is a fruitful area of future 

analysis and study for transportation impact studies and site-level evaluation, for this 

manuscript an area-wide measure of median income in the local proximity (census block 

group of the establishment) is used as a proxy of the demographics of the potential 

location consumer market. 

It is important to note that all locations in this study have free and relatively 

unconstrained parking at the time of data collection. Additionally, the grocery store and 

convenience market data were collected in spring and fall, respectively. While there was 

limited variation in observed temperature, we include a variable to control for total 

precipitation (inches) during the observation day or week. This measure was computed 

using historic weather data for the Portland International Airport on the survey day 

collected online from Weather Underground. 
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Table 4-2 Description of Accessibility-Related Environmental Measures 

Measure Description Variables/Source 
* Regional 
Accessibility 

[index: {0,1)] 
 

Jobs accessible within a 45-minute 
drive, weighted by a travel time 
decay function and normalized by 
the regional total and maximum 
accessibility value at a block-group 
level (Regional Centrality Index) 

2010 SLDB;  
Variables: D5cri 

* Local 
Accessibility  

[people per 
acre] 

Sum of gross population and 
employment on unprotected land 
per acre at a block-group level 

2010 SLDB;  
Variables: D1b + D1c  

* Median Income 
[2014 US 

Dollars] 
 

Median household income at a 
block-group level 

2014 ACS (5-year) 
Variables: B19013 

Distance to the 
CBD 
[miles] 

Euclidean distance between the 
establishment address and the center 
of the central business district 
(CBD) 

Calculated ** 

Competition 
[count of 
establishments] 

Number of similar establishments 
within ½ mile Euclidean distance of 
the establishment address 

2010 ESRI Business 
Analyst; 
Variable: 
NAICS_EXT*** 

Land Value 
[2016 US 
dollars per 
square foot of 
land] 

Average real market value of land 
(no building) per square foot for 
commercial land within a ½ mile 
Euclidean buffer of the 
establishment address 

2015 RLIS, Tax lot 
layer; 
Variables: Landval; 
Events where 
Prop_code: 200-292 for 
Commercial Land 

NOTES: 
CBD: Central business district 
SLDB: Smart Location Database - https://www.epa.gov/smartgrowth/smart-location-
mapping#SLD 
RLIS: Regional Land Information System - http://rlisdiscovery.oregonmetro.gov/  
1 Used in the subsequent analysis. 
** Portland’s metropolitan CBD was estimated to be Pioneer Square. 
*** 6-digit NAICS code categories considered include: 445110, supermarkets and other 
grocery (except convenience) stores; 445120, convenience stores; 445210, meat markets; 
445220, fish and seafood markets; 445230, fruit and vegetable markets; 445291, baked goods 
stores; 445292, confectionery and nut stores; 445299, all other specialty food stores; and 
445310, beer, wine, and liquor stores.  

  

https://www.epa.gov/smartgrowth/smart-location-mapping#SLD
https://www.epa.gov/smartgrowth/smart-location-mapping#SLD
http://rlisdiscovery.oregonmetro.gov/
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Defining Contextual Groupings for Convenience Markets 

The main caveat of having access to this disaggregate and valuable data were the 

agreement that the location information (XY-coordinates) had to be partially masked. As 

part of the data-release agreement, the local convenience market partner in the study 

asked for groupings of no fewer than five stores to retain the business-sensitive 

information regarding each individual location. The 84 establishments were divided into 

17 groups of four to six based on the location characteristics, as described in this section. 

Provided with groupings that accommodated the study and the business owner, the local 

market partner returned the transaction counts data for individual establishments. These 

counts were categorized according to our predetermined groupings with the individual 

locations masked. Although the locations for all sites within each group are known, data 

specific to each location remain confidential. Instead, group averages of variables were 

calculated to capture variation in our desired location characteristics. 

The process of pooling the data into groups of similar location characteristics was 

iterative and exploratory. Although the accessibility and income measures were 

determined early on, many of the approaches explored to classify locations had many 

limitations that effected the ability to meet primary objectives: to minimize the grouping 

size to five or six establishments per grouping. By exploring various methods—including 

k-means cluster analysis, factor analysis, percentile and Jenks breaks approaches, and 

Manual classification—we found that limitations satisfying this constraint would not 

likely be replicable unless the constraints were incorporated into a quantitative clustering 

process. 
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To capture the greatest variation in accessibility from our clusters, we applied a 

balanced clustering analysis with accessibility and income measures that were described 

previously (Malinen and Fränti 2015, 2014). Data reduction techniques like clustering 

analysis or factor analysis are often used to distill built environment information into 

operational place types or indices in trip generation research (Clifton et al. 2012; 

Schneider, Shafizadeh, and Handy 2015), but no existing approach in the transportation 

impact analysis field has dealt with the added constraint of minimizing groupings to a 

balanced level. K-means clustering algorithms balance one ojective—reducing the mean 

squared error (MSE) for the group of clusters—and balanced k-means clustering 

algorithms balance two objectives—reducing MSE and balancing the number of 

observations in each cluster. By using a balance-constrained approach, linear programing 

ensures that balanced clusters are a priority. In comparison, balance-driven approaches 

make balancing clusters a secondary priority (Malinen and Fränti 2014). 

Using the three independent variables discussed in the previous data section, a 

balanced k-means cluster analysis was performed resulting in 17 clusters of four to six 

establishments each (See Figure 4-3).25 Variables were first normalized by their mean to 

control for the varying range of variables—local accessibility, for example, ranged from 

                                                 

25 Observations collected in downtown Portland’s central business district (cluster 8) had 

substantially higher local accessibility (activity density) values and were later removed after identifying 

potential spurious results between activity density and transaction counts inflating the significance of the 

coefficients.  
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0 to about 280 people per acre while regional accessibility varied between 0 and 1. 

Following, each of the three scaled variables (regional accessibility, local accessibility, 

and income) were weighted per their relative importance based on the literature review 

findings (3, 2, and 1, respectively). 
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Figure 4-3 Balanced Clusters of Convenience Markets along Three Metrics: Regional Accessibility; Local Accessibility (transformation: natural 
log); and Median Household Income 113 
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While an analysis of variation indicated that the clustering resulted in 

significantly different group means for all accessibility and income measures across the 

clusters, a post-hoc analysis indicated that 77% of the clusters, compared with others in 

the sample, had significantly different regional accessibility mean values; following, 43% 

and 29% of the clusters compared had different local accessibility and income mean 

values, respectively. This suggests, as intended, that the clusters best reflect variation in 

regional accessibility, followed by local accessibility and income. The main implication 

of using a group-level contextual variable average, instead of the individual site’s 

variable, lowers the amount of variation in each contextual variable from 93 total 

locations to about 30 by masking the actual location of each establishment. As many have 

indicated with site-level transportation analyses, sample size is often a limitation of 

analysis, as it is in this study. Adding to this limitation, the requirement of masking 

location information in groups of five locations restricted the ability to observe variation 

in contextual information for these sites to 17 groups. Although the balanced clustering 

analysis allowed us to maximize variation across groupings, examining residuals on a 

more refined level remains impossible.  

Although this manuscript would not have been possible without the donation of 

transaction data from the two partners who participated in this stdy, one major limitation 

of this analysis comes from the masking of individual data behind the balanced clusters 

created for convenience markets. Reducing the number of different contextual 

observations to one-fifth of the original sample size (clusters of approximately five 

stores), also limits the variation observed in the models, reducing the ability to examine 
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site-level errors. While small sample size is often a stated limitation in many 

transportation impact studies, here, the need to mask data manufactured it. Additional 

analysis simulating potential individual-level observations in instances where a certain 

level of masking is required may provide an understanding of the probability of finding 

significant relationships—and perhaps the distribution of potential relationships—given 

full access to the site locations. But this is an area for future analysis.  
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Table 4-3 Descriptive Statistics of Dependent and Independent Variables, Including Regional 
Comparison  

 Convenience Market Grocery Stores 

Mean St. 
Dev. N Range Mean St. 

Dev. N Range 

Observed Data 
Locations --- --- 80 --- --- --- 13 --- 
Weekly Transactions 

[Counts] 4,430 1,096 80 2,596 – 8,335 16,786 3,903 63 10,088 – 
23,930 

Daily Transactions  
[Counts, all days] 633 167 560 325 – 1,395 2,396 581 467 1,203 – 

3,889 
AM Peak Transactions  
    [Counts, all days] 179 156 560 20 – 799 209 203 467 30 – 886 

Midday Peak Transactions  
    [Counts, all days] 235 214 560 26 – 957 226 201 467 26 – 873 

PM Peak Transactions  
    [Counts, all days] 293 283 560 30 – 1,086 208 185 467 27 - 854 

Gross Floor Area 
[1,000 SQFT] 2.5 0.3 80 2.1 - 4.6 33.0 9.2 13 17.2 - 

50.0 
Precipitation 1 

[Total Inches]         

       Weekly 4 26.7 --- 80 --- 5.1 3.2 63 0.0 – 9.4 
       Daily < 0.1 0.1 561 0.0 – 0.3 < 0.1 0.1 482 0.0 – 0.41 
Contextual Information 2 

Observed Locations 
Regional Accessibility 

[Index {0,1}] 0.60 0.18 80 0.20 – 0.89 0.63 0.16 13 0.37 – 
0.87  

Local Accessibility 
[People per acre] 13.3 6.5 80 3.6 – 30.0 16.1 7.6 13 2.0 – 32.6 

Median Income 
[2014 $10,000 US 
Dollars] 

5.36 1.70 80 3.10 – 8.81 6.00 2.53 13 2.30 – 
10.15 

Portland Region 3 

 Mean St. Dev. N Range 
Regional Accessibility 

[Index {0,1}] 0.50 0.21 1319 0 - 1 

Local Accessibility 
[People per acre] 12.7 18.0 1319 0.01 - 280.81 

Median Income 
[2014 $10,000 US 
Dollars] 

6.37 2.60 1319 1.10 – 20.99 

NOTES: 
1 Sum of total inches observed on the day of data collection gathered from historic data supplied by 

WeatherUnderground.com for the location: Portland International Airport. 
2 Collected from the Portland Metropolitan Area using the same variables as described in Table 4-2. 
3 Calculated by block groups in the Portland, Oregon, area. 
4 Convenience market observations were collected for the same week. Weekly summary of precipitation in 

total inches is constant for convenience markets.  
SQFT: Square footage 
St.Dev.: Standard deviation 
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Methods 

To investigate the variation in transaction rates for the pooled data from these two 

land uses, three negative binomial regression analyses was completed estimating weekly, 

daily, and peak-hour transaction counts regressed upon our contextual characteristics 

(accessibilities and income), temporal variables (e.g., day of the week, time of day), a 

control variable for land use (e.g., grocery store or not), a covariate controlling for 

precipitation, and interactions of previously mentioned variables. Peak-hour counts 

represent the total transaction counts occurring during the peak period of the adjacent 

street (not of the generator). These times were segmented in an AM Peak (6:00AM to 

9:00AM), a Midday Peak (11:00AM to 2:00PM), and a PM Peak (4:00PM to 7:00PM). 

Ideally, a control for store size should be established when predicting transaction rates; 

however, for both land uses, there was limited variation in the store size (see Table 4-3). 

Implications for variations in store size are explored in the discussion section. 

Negative binomial regression was selected to account for the count-based nature 

of these data, but since the size of each establishment varied, an offset was used to 

control for the GFA in units of 1,000 SQFT, similar to the normalization of trip 

generation rates used in ITE’s Handbook (Institute of Transportation Engineers 2014). 

This offset allows a control for the “exposure” of the site, in terms of establishment size 

and capacity to host customers, but the coefficient estimated from this offset is 

constrained to a value of zero. The corresponding interpretation of the model coefficients 

indicates a relationship between the independent variable and the dependent variable as 

expressed in a rate. In other words, the model is estimated as: 
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𝑙𝑙𝑙𝑙(𝑌𝑌) = 𝛽𝛽0 + 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑙𝑙𝑙𝑙 (𝑆𝑆), 

where the transaction counts, Y, for establishments are regressed upon the k-number 

independent variables, X, and exposure, P. And where 𝛽𝛽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is constrained in 

estimation to a value of one such that the equation can be re-written as: 

𝑙𝑙𝑙𝑙(𝑌𝑌) = 𝛽𝛽0 + 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘 + 1 ∗ ln (𝑃𝑃), 

or: 

𝑙𝑙𝑙𝑙(𝑌𝑌) − ln(𝑃𝑃) = ln �𝑌𝑌
𝑃𝑃
� = 𝛽𝛽0 + 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘. 

 The estimated coefficients can then be interpreted as the relationship between the 

given independent variable (𝑋𝑋𝑘𝑘) and the rate of counts (𝑌𝑌) per exposure (𝑃𝑃)—which is 

GFA in this analysis. 

For convenience markets (open 24-hours per day), we were provided with one 

week of transaction data—aggregated to a weekly rate and daily rates (by day of week)—

from October 2015 for all 80 sites. For the grocery stores (open 14-hours per day), we 

were given three full weeks of data for one store (23 days total each) and five full weeks 

of data from 12 stores (37 full days’ total), sampled from April 2013 and 2014. The result 

is 143 observations of weekly transaction counts, 1,027 daily transaction counts 

observations, and 3,081 observations of peak-hour counts for the 93 establishments.  

Multiple analysis methods were considered to treat the repeated nature of the data, 

which violates the assumption of independent errors, inflating significance where there 

may be none. All methods (e.g., multilevel analyses, weighted repeated measures, 

random sampling) returned similar coefficients, direction of effects, and effects sizes, but 
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a negative binomial multilevel model form was chosen because it had the lowest Akaike 

Information Criterion (AIC) given the same independent variables and data. In this 

analysis, the level-1 variables were the transaction counts, aggregated first by week and 

then by day and peak hour. For the weekly data, the count data were nested within the 

establishment location (level-2). But for both daily and peak-hour models, the count data 

were first nested within a time-based level, week and day, respectively (level-2), and then 

within the establishment location (level-3). This was done to help control for repeated 

measures that were sampled so closely in time, and although this temporal nesting had 

little influence on the effect size of coefficients, it contributed significantly to reducing 

the overall AIC of both models and caused the significance of the location variables to 

change. The contextual variables, level-2 for the weekly model and level-3 for the daily 

and peak-hour models, included regional and local accessibility, income, and SQFT of 

GFA. Also included was a dummy indicating whether the establishment was a grocery 

store, as well as interactions between the grocery store dummy variable and the 

contextual variables.  

Ideally, to detect contextual influences on level-1 outcomes (transactions), it is 

preferable to have sampled far more establishment-level observations, with fewer level-1 

measurements than more level-1 measurements for a few establishment-level 

observations. This approach is ideal for datasets such as ITE’s Trip Generation 

Handbook (2014) where volunteers often submit a few hours of data for each site, 

submitting more locations than observations from any one. In this case, we have 94 

locations with between one to three observations weekly, one to six observations for each 
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day of the week, and three observations for each peak-hour period. Because data were 

selected from consecutive days within the three samples from 2013 to 2015, including 

these data in one model would require more sophisticated autocorrelation controls than 

the sample size allows. Instead, this is an area for future research and exploration.  

To test for a mediated effect of the location variables (regional, location 

accessibility and income) on the distribution of transaction counts across the time of day 

and day of week, additional covariates representing the day of week and time of day are 

needed. Lastly, while controlling for the weather is a complex and nuanced process, an 

attempt was made to control for potential variations from sampling in the spring and fall 

of three separate years by incorporating a variable for precipitation (inches of rain) 

acquired on the day of observation (or aggregated for the weekly transaction counts).  

Results 

Before the results of these analyses are interpreted, we remind the reader that all 

outcomes were regressed upon the independent variables while using an offset of the 

natural log of the GFA (in 1,000 SQFT). All coefficients are interpreted in terms of how 

each independent variable relates to transaction counts per 1,000 SQFT.  
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Table 4-4 Negative Binomial Multilevel Model with Repeated Measures: Weekly, Daily, and Peak-
Hour Transaction Counts (per 1,000 SQFT of GFA) 

 Dependent Variable, Counts: Weekly Daily Peak Hour 
Observations 143 1,027 3,081 
Log Likelihood -1,225.38 -6,253.14 -19,215.01 
Akaike/ Bayesian Inf. Crit. 2,473 / 2,505 12,546 / 12,645 38,486 / 38,655 
  β S.E.  β S.E.  β S.E.  
Intercept 7.80 0.15 *** 5.79 0.14 *** 4.91 0.27 *** 
Type of establishment (base: conv. markets)       
  Grocery ± -2.26 0.50 *** -2.17 0.50 *** -5.33 0.59 *** 
Locational Variables          
  Regional Accessibility -0.18 0.29  -0.18 0.28  -0.38 0.54  
 Activity Density 0.01 0.01  0.01 0.01  0.00 0.02  
 Income ($10,000s) -0.04 0.02 . -0.04 0.02 . -0.13 0.04 ** 
Location Variable * Grocery          

  
Regional Accessibility * 
Grocery 0.82 0.76  0.82 0.76  4.17 0.77 *** 

 Activity Density * Grocery 0.01 0.02  0.00 0.02  -0.05 0.02 ** 
 Income ($10,000s) * Grocery 0.07 0.04 . 0.07 0.04 .. 0.26 0.06 *** 
Day of the week (base: Friday) ±          
  Monday      -0.09 0.01 *** 0.13 0.05 * 
 Tuesday    -0.07 0.01 *** 0.07 0.05 .. 
 Wednesday    -0.01 0.01  0.17 0.05 ** 
 Thursday    -0.05 0.01 *** 0.12 0.05 * 
 Saturday    0.00 0.02  0.00 0.06  
 Sunday    -0.08 0.01 *** 0.10 0.05 . 
Location Variables * Day of the Week         
  Activity Density * Weekend      -0.01 0.00 ***    
 Activity Density*Weekend*Grocery   0.01 0.00 ***    
Peak Hour (sum of 3-hour peak)           
  AM (6-9AM) base           (base)     
 Midday (11AM-2PM)       0.32 0.16 * 
 PM (4-7PM)       0.56 0.17 *** 
Location Variables * Peak Hour          
  Regional Accessibility * Midday         -0.38 0.28 .. 
 Regional Accessibility * PM       -0.62 0.28 * 
 Activity Density * Midday       0.00 0.01  
 Activity Density * PM       0.01 0.01  
 Income ($10,000s) * Midday       -0.00 0.02  
 Income ($10,000s) * PM       0.03 0.02 .. 
Peak Hour * Grocery          
  Midday * Grocery           -0.06 0.07  
 PM * Grocery       -0.49 0.07 *** 
Precipitation (inches)          
 Weekly Total 0.00 0.00 .       
 Daily Total    -0.04 0.03 .. -0.17 0.16  
NOTES: "***": p-value ≤ 0.001; "**": p-value ≤ 0.01; "*": p-value ≤ 0.05; ".": p-value ≤ 0.1; “..”: p-
value ≤ 0.2. ± Dummy Variable; GFA: Gross Floor Area; SQFT: Square Footage 
An offset was used to normalize transactions by the exposure, measured in establishment level GFA in 
1,000 SQFT and transformed using the natural log. 
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Elasticities 

To examine the relationship between our variables of interest and transaction 

counts at each of the three temporal scales, we calculate the elasticities, 𝜂𝜂, as it relates to 

the transaction counts, 𝑌𝑌, and each variable of interest, 𝑋𝑋. In other words,  

𝜂𝜂 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑋𝑋
𝑌𝑌
. 

Because a negative binomial model was applied, the elasticity may be expressed 

as: 

𝜂𝜂 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑋𝑋
𝑌𝑌

= 𝛽𝛽1𝑋𝑋,  

Where 𝛽𝛽1 expresses the coefficient estimated for the variable of interest and 

interaction (dummy) variables were zero, or: 

𝜂𝜂 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∗ 𝑋𝑋
𝑌𝑌

= (𝛽𝛽1 + 𝛽𝛽2)𝑋𝑋, 

Where 𝛽𝛽2 expresses the coefficient estimated for the variable of interest interacted 

with a dummy variable with a value of one. 

Table 4-5 through Table 4-7 indicate the elasticities calculated for each of three 

models: weekly, daily, and peak-hour transaction counts, respectively. A calculation was 

provided for each of the three variables of interest for each of the two land uses, and (for 

the peak-hour model) the three peak-hour time periods. The value for 𝑋𝑋 is taken at the 

mean observed values, given the land use in question. Elasticities are interpreted as a 

percent change in transaction counts for a percent change in the variable of interest. 
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Table 4-5 Weekly Counts Model: Computed Elasticities for Location Variables, by Establishment 
Type 

 Establishment Type: 

Locational Variables (X) Convenience 
Market 

Grocery 
Store 

Regional Accessibility -0.11 0.40 
Activity Density 0.13 0.32 
Income ($10,000s) -0.21 0.18 
NOTES: 
Coefficients multiplied by average observed values. 

Table 4-6 Daily Counts Model: Computed Elasticities for Location Variables, by Establishment Type 

 Establishment Type: 

Locational Variables (X) Convenience 
Market 

Grocery 
Store 

Regional Accessibility -0.11 0.40 
Activity Density 0.13 0.16 
Income ($10,000s) -0.21 0.18 
NOTES: 
Coefficients multiplied by average observed values. 
All values represent weekday travel. 

Table 4-7 Peak-hour Counts Model: Computed Elasticities for Location Variables, by Establishment 
Type 

 Establishment Type: 

Locational Variables (X) 
Convenience Market  Grocery Store 

AM 
Peak Midday PM 

Peak 
 AM 

Peak Midday PM 
Peak 

Regional Accessibility -0.11 -0.34 -0.48  0.40 0.16 0.01 
Activity Density 0.13 0.13 0.27  0.16 0.16 0.32 
Income ($10,000s) -0.21 -0.21 -0.05  0.18 0.18 0.36 
NOTES: 
Coefficients multiplied by average observed values. 
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Interpretation 

The results from all three models suggest no significant direct relationship 

between transactions at weekly or daily temporal scales and regional accessibility (the 

Regional Centrality Index, which correlated highly with distance to the CBD). The peak-

hour model, however, suggests relationships between transaction counts and regional 

accessibility were found to be significant and positive for grocery stores, but not 

significant for convenience markets. Additionally, the interaction between PM and 

midday peak hours were found to be negative, compared with that of the AM peak hour 

that are significant and marginally significant, respectively (p-values = 0.03, 0.17, 

respectively). This suggests that there is not enough evidence to suggest a relationship 

between regional accessibility and transaction counts at a weekly, or even a daily, 

temporal scale. The distribution of trips within a given day may vary by regional 

accessibility—observing a greater sensitivity to regional accessibility, on average, during 

the AM peak hour than midday or PM peak hour, all else equal. In terms of elasticities, 

these relationships, controlling for all else, suggest that transactions during the AM peak 

hour have a higher elasticity (0.4, Table 4-7) compared with the midday and PM peak 

hours (0.16 and 0.01, respectively, Table 4-7). 

For local accessibility—defined as activity density, which was earlier found to 

have a high correlation with the real market value of commercially zoned land and 

competition to similar and potentially substitutable businesses—there was not enough 

evidence to suggest a significant relationship between weekly or daily transaction counts. 

However, it appears that a significant, albeit small, relationship exists between 
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transactions and the interacted effect of activity density and weekend days for both land 

uses (p-value < 0.001). This suggests a slightly higher sensitivity of weekend to local 

accessibility for grocery stores (𝛽𝛽 = 0.01), and a slightly lower sensitivity for 

convenience markets (𝛽𝛽 = −0.01). For peak-hour travel, there was not enough 

information to detect a significant relationship between transaction counts and 

convenience markets. But for grocery stores, the results suggest significantly less 

sensitivity to activity density (𝛽𝛽 = −0.05,𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.01). There was not enough 

evidence to suggest a significant relationship between transactions and local accessibility 

across peak hours.  

An examination of relationships between transactions and median income reveals 

several significant effects that may be observed. Higher levels of median income relate to 

higher weekly transitions for grocery stores (𝛽𝛽 = 0.07,𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.10), but to a lower 

number for convenience markets (𝛽𝛽 = −0.04,𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.08). The models that 

estimated daily transition counts found similar relationships. While examining the peak 

hour, the direction of the relationship between transactions and income remain the same; 

however, the effect size and significance increases for both convenience markets (𝛽𝛽 =

−0.13, 𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.005) and grocery stores (𝛽𝛽 = 0.26,𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 < 0.001). The 

relationship strengthens somewhat during the PM peak hour, making it marginally 

significant compared against the AM peak hour (𝛽𝛽 = 0.03,𝑝𝑝 − 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = 0.108). In terms 

of elasticities, this shows an increase in the relationship between income and peak-hour 

transaction counts to 0.36 during the PM peak hour, from 0.18 during the AM and 
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midday peak hours for grocery stores, and an increase to -0.05 during the PM peak hour, 

from -0.21 during the AM and midday peak for convenience markets.  

The relationship between weather and travel choices is a complex one; the authors 

cautions interpretation of significant, effect size and direction of coefficients estimated 

for weekly or daily precipitation. While this variable was found to make a marginally 

significant contribution for the explanation of additional variance in the model (p-value < 

0.2), the values are obtained at an aggregate metropolitan level for each survey day, 

which may result in an inflated sense of significance. 

Conclusions 

The hypothesis tested in this analysis was that variation in transaction rates, tested 

as a proxy to overall activity or person-trip rates at these retail food establishments, is 

related to regional and local accessibility as well as income. While there was not enough 

statistical evidence to suggest a significant relationship between varying urban contexts—

in terms of regional and local accessibility and weekly and daily transaction rates—there 

was for median income of the surrounding area. While much of the literature on traffic 

impact analysis estimation has focused on urban form as the main contextual effects—

e.g., (Ewing et al. 2011; Schneider, Shafizadeh, and Handy 2015; Clifton, Currans, and 

Muhs 2015)—few have recognized the importance of sociodemographic characteristics 

of the potential market of retail establishments as it relates to transportation impacts, in 

this case, person-trip rates. Furthermore, the results indicate other significant effects that 

modify the relationships between transactions and regional accessibility and median 

income, suggesting the contextual effects to be relative to the time in which counts are 
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being measured. As many transportation impact analyses are focused in the PM peak 

hour, these results suggest relationships derived during the AM peak hour may not hold 

for the midday and PM peak hour.  

This analysis aims at understanding the relative variation in transaction rates 

within a region, particularly for transportation impact studies focused on overall 

estimation of activity. Many existing approaches that allow practitioners to adjust for 

urban form require a non-count adjustment (such as mode share) of base-case estimates, 

generally ITE’s vehicle-trip rates. The assumption being that ITE’s vehicle-trip rates 

reflect suburban area-types, and adjustments account for relative changes in behavior in 

more urban contexts. There exists limited if any information about the sociodemographic 

contexts of ITE’s data (or other count data for that matter). Therefore, adjusting existing 

methods for sociodemographic variables, such as area-wide income, become problematic 

when there exists no baseline of trip rates for “average income” establishments, 

particularly for non-residential land uses. More research and data collection is necessary 

to understand the scale of this variation and the influences on trip generation estimates. 

This manuscript focuses on two firms developed within one region. While this 

helps to control for the variation in each firm's target consumer market—specifically in 

reducing variation in cost, quality, and type of products, as well as marketing strategies—

the rates derived in this analysis may not reflect average convenience market or grocery 

store location decisions. The monadic and tactical decisions made within these firms to 

create more efficient and productive establishments at all locations could possibly offset 

the relationships between consumer activities (transaction counts and person trips) and 
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the location characteristics (local and regional accessibility and access to targeted income 

markets), dampening benefits from accessibility and locating near target consumer 

markets. For future studies, ideal study location selection would include a random sample 

of locations picked across space, controlling for the multilevel hierarchy of 

establishments within firms (e.g., multilevel modeling). Similarly, while this analysis 

controlled for the multilevel nature of these days in time and space, no controls for spatial 

correlation were included in this analysis. 

Although this manuscript would not have been possible without the donation of 

transaction data from two partners, one major limitation of this analysis comes from the 

masking of individual data behind the balanced clusters created for convenience markets. 

Reducing the number of different contextual observations to one-fifth of the original 

sample size (clusters of approximately five stores), also limits the variation observed in 

the models, reducing the ability to examine site-level errors. While small sample size is 

often a stated limitation of many transportation impact studies, here, the need to mask 

data created this limitation. Additional analysis simulating potential individual-level 

observations in instances where a certain level of masking is required may provide an 

understanding of the probability of finding a significant relationship—and perhaps the 

distribution of potential relationships—given full access to the site locations. But this is 

an area for future analysis. 

While these findings point to the need to understand and control for contextual 

variables beyond urban form in transportation impact analyses, the limitations in the 

variation and sample capturing accessibility and income warrant the use of these methods 
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in applications of transportation impact analyses only with caution. A better 

understanding is needed to identify the relationship between transaction counts and 

person-trip counts—a function that is likely related to group size and the duration of the 

customer’s stay. With high on-site, transportation-impact-analyses data and the increased 

demand for person-trip counts, transaction counts may provide a valuable proxy, 

especially as they are often being collected for many different commercial land uses.  

Moreover, the two datasets pooled in this analysis came from two different 

regional chains. While this allows the ability to control for potentially confounding 

factors—such as retail culture, price point or product selection (Brown 1992)—counts 

estimated from these models may not reflect average counts for other regions. Additional 

regional analyses are necessary to identify intraregional relationships between overall 

activity, in this case shopping at grocery and convenience markets, and accessibility to 

income markets or destinations—defined as either local or regional.  

The method of analysis, negative binomial multilevel models, for estimating a 

more refined temporal level of analysis (such as hourly) appears promising. Multilevel 

analysis with a count-based model form, here a negative binomial regression, provides a 

way to interpret contextual level effects (accessibility, density, income) on trip rates. By 

nesting hourly counts within contextual variables describing establishment-level (or even 

area-wide level) analysis, one may be able to consider multiple temporal exposures, 

pooling peak-hour counts as well as 24-hour counts into the same models. The next steps 

of this analysis consider just that, an approach that utilizes controls for both contextual 

and temporal effects.  
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Although the methods presented in this paper (multilevel, multivariate, negative-

binomial regression at multiple temporal scales) are more statistically rigorous compared 

with practical methods (univariate linear region), it is important to emphasizes the 

inherent uncertainty in any method of estimation—especially if used for prediction. To 

explore this, we examine the fitted versus the observed transaction counts (see Figure 

4-4) for grocery stores using the “daily” temporal scale model (see: Table 4-4). Because a 

multilevel model was estimated, we examine a 95% confidence interval of predicting the 

fitted value through a bootstrapped approach—estimating the model for each observation 

1,000 times, each with a randomly selected value drawn from the distribution of random 

variables estimated from the contextual level, and then calculating the confidence 

interval. Although the methods control for the count-based nature of the data, a wide 

range of prediction is observed, even for locations from which the given model was 

estimated. For transportation impact studies that so often call for expanding the vehicle 

network, rarely is the uncertainly of the prediction methods brought into discussion.  
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Figure 4-4 Bootstrapped 95% Confidence Interval for Estimated Daily Transaction Counts at 
Grocery Stores, Compared with Observed Daily Counts 
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CHAPTER 5 COMPOUNDING OVERESTIMATION OF AUTOMOBILE 

TRAFFIC IN TRANSPORTATION IMPACT STUDIES: A CASE STUDY 

Introduction 

Many agencies rely on trip generation estimates to evaluate the transportation 

impact of land development. Over the past decade, substantial attention has been paid to 

one set of national guidelines—the Institute of Transportation Engineers’ (ITE) Trip 

Generation Handbook (2014) and corresponding Trip Generation Manual (2012), 

referred to interchangeably within this manuscript—focusing in particular on critiquing 

the suburban, automobile-oriented nature of the data. Several projects have focused on 

the lack of sensitivity of these widely used data to urban context (Clifton, Currans, and 

Muhs 2015), smart growth areas as studied in phase I (Schneider, Shafizadeh, and Handy 

2015) and II26 of California projects, mixed-use areas (Bochner et al. 2011; Ewing et al. 

2011), and transit-oriented development (Ewing et al. 2017). Others improve the 

representation of varying types of residential housing characteristics, such as reduced or 

paid parking environments (District Department of Transportation 2015), affordable 

housing27, or new housing products (e.g., micro- or zero-parking apartments)28. Many of 

                                                 

26 Ongoing project funded by Caltrans, led by Brian Bochner of Texas A&M Transportation 

Institute.  

27 Ongoing project funded by Caltrans, led by Kelly J. Clifton of Portland State University (PSU). 

28 Project funded by the National Institute for Transportation and Communities (NITC), led by 

Kelly J. Clifton of PSU. 



  133 

 

 

these studies have been incorporated into the third edition of the ITE’s Handbook and the 

upcoming updates (Bochner et al. 2016), and reviews and validation of these methods are 

available elsewhere (Currans 2017; Currans and Clifton 2015; Sandag 2010; Shafizadeh 

et al. 2012; Weinberger et al. 2015). 

Despite these recent studies, there are still a number of limitations that persist in 

the existing practice. Many new approaches, for example, continue to rely on ITE’s 

Handbook vehicle data as a baseline for adjustment (Currans 2017), despite a lack of 

sensitivity to known influences of travel behavior—such as the built environment and 

demographics— potentially/likely resulting in a biased estimate of automobile demand, 

inflating the costs and requirements on new development. Agencies also remain 

dependent on existing suburban Handbook data despite their urban contexts (Bochner et 

al. 2011; Clifton, Currans, and Muhs 2015). ITE’s data continue to be applied in multiple 

aspects of the land development process, including, but not limited to: transportation or 

traffic impact analyses and studies (TIAs/TISs); scaling and scoping of development; and 

system development charges, impact or utility fees. Limitations of these data related to 

their temporal, spatial, and social contexts propagate into many aspects of the land 

development process. 

The purpose of this study is to explore the issues in the data and methods 

provided in ITE’s Trip Generation Handbook, comparing with theories and research of 

travel behavior, and to quantify the bias introduced into the development process. ITE 

explains that “an example of poor professional judgment is to rely on rules of thumb 

without understanding or considering their derivation or initial context” (Institute of 
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Transportation Engineers 2014, 3). The objective of this manuscript is to improve 

understanding of these widely-used data to encourage increased engagement with their 

context. From here, the users (engineers, planners, agencies, developers) can make more 

informed decisions about the application of ITE’s data for varying contexts and 

applications.  

Methods 

Since the ITE’s Handbook starts that their data collection in the 1960’s (2014, 7), 

there have been substantial improvements to the state of the knowledge in the travel 

behavior literature. There exist many innovative methods that attempt to control for some 

of this bias—most notably influences of the built environment (Chapter 2). However, 

there is no proof that these methods have been widely accepted in practice. And the 

implications of ignoring this research—in applying ITE’s data without adjustment for 

these contexts—may result in the severe overestimation of vehicle demand corresponding 

with biases in estimates of impact fees or charges and/or overbuilding of automobile 

facilities.  

The aim here is to align the context of ITE’s data with existing research and 

studies—identifying any means (data, research, methods) to quantify any potential 

direction and degree of bias. These findings are separated into their respective temporal, 

spatial, and social contexts in the results section. Then, these findings are summarized 

with a demonstration of the cumulative impacts. 

This manuscript focuses on a single data set: ITE’s Trip Generation Handbook 

(2014) and Manual (2012). In the following section, we discuss the data itself—including 
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a description what the data are, how they are used, and how they were accessed for this 

analysis. Then, the methods for this analysis are described. The results section explores 

issues along temporal, spatial, and social contexts identified when comparing ITE’s data 

to previous research. Where possible, quantifiable impacts are identified and referenced.  

For many of the issues identified throughout the results section, there is not 

sufficient quantitative evidence to directly quantify impacts. These are areas for future 

research. Issues we can quantify are explored further, in the section “Summary and Case 

Study” on page 157. Impacts are then independently and cumulatively estimated for two 

land use cases (supermarkets and convenience markets) along three spatial scenarios 

(suburban, general urban, and urban district) and three demographic scenarios (high-, 

moderate-, and low-income levels). The cumulative results indicate inflated estimates of 

automobile demand in all scenarios. The implications of these results are discussed in the 

conclusion. 

Data - ITE’s Trip Generation Handbook 

For many agencies, the ITE’s Handbook provides the basis to evaluate the 

transportation impacts of land-use development. These data provide the trip generation 

counts of vehicles coming to and going from a site; for simplicity, we refer to these 

counts as “trip ends” and “trips” interchangeable in this manuscript. Up to the 9th Edition, 

the data in  the Manual includes only vehicle counts, primarily collected in suburban 

locations where sites include only a single land use (no mixed use), have free and ample 
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parking, with little to no transit, bike or walking trips (Institute of Transportation 

Engineers 2012)29.  

Trip rates are provided for a variety of land uses types in three forms: (1) in 

average trip generation rates, in counts per independent variable (usually square footage, 

number of dwelling units, employees); (2) graphical representation of them plotted 

against the independent variable, and; (3) in equations, where the counts are regressed 

upon one independent variable. Rates are provided by land use and time period 

(weekday, weekend, AM or PM peak hour of the adjacent facility, AM or PM peak hour 

of the generator). Guidance is provided within the Handbook for selecting one of the 

three rate forms (average rate, graphics, or equation) (2014).  

Equations are only provided for land uses where the estimated explanation of 

variance, R2, is greater than or equal to 0.5 and where there are four or more data points. 

About one-third of the rates have equations. In ITE’s Handbook, trip rate equations are 

generally formulated as either linear or log-log regressions, as follows: 

                                                 

29 The 3rd edition Handbook (Institute of Transportation Engineers 2014) and the forthcoming 10th 

edition Manual (Bochner et al. 2016) include urban data—both multimodal person and vehicle trip 

generation counts. These new data are often called “urban” data, while the older suburban data are called 

“baseline” data. These urban data are currently available limited quantity and transparency. The current aim 

of ITE’s Expert Panel on Urban Trip Generation is to provide guidance on how to use them. This 

manuscript focuses on the “baseline” data in the most recent edition of the data within the Manual (Institute 

of Transportation Engineers 2012). 
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𝑇𝑇 = 𝛽𝛽 ∗ 𝐼𝐼𝐼𝐼 +  𝛽𝛽0 or  ln(𝑇𝑇) = 𝛽𝛽 ∗ ln(𝐼𝐼𝐼𝐼) + 𝛽𝛽0, 

where T and IV represent vehicle trips and the independent variable, respectively. 

And 𝛽𝛽0 and 𝛽𝛽 are the estimated constant and coefficient, respectively. ITE provides 

estimated univariate equations for each independent variable provided there are (a) four 

or more observations for the given land-use category, time period, and independent 

variable, and (b) the R2 value (unadjusted by sample size30) is greater than 0.5 (2014, 23). 

If these regression standards are not met, the average weighted trip rate is provided: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��������𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = ∑ 𝐼𝐼𝑉𝑉𝑖𝑖
∑ 𝐼𝐼𝐼𝐼𝑁𝑁
𝑖𝑖=1

� 𝑇𝑇𝑖𝑖
𝐼𝐼𝑉𝑉𝑖𝑖
�𝑁𝑁

𝑖𝑖=1 = ∑ 𝑇𝑇𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝐼𝐼𝐼𝐼𝑖𝑖𝑁𝑁
𝑖𝑖=1

. 

Convenience Sample 

It is also worth noting that the sites selected for inclusion in ITE’s Trip 

Generation Handbook are not a random sample attempting to proportionately represent 

similar businesses or land uses across the United States. These data are a convenience 

sample, primarily offered as donations from data collections. Without adequate location 

information, the characteristics of the site and environs are unknown. However, the 

Handbook does specify that the majority of data provided are from “low-density, single-

                                                 

30 Although the threshold R2-value does not consider adjustments for smaller sample sizes, 

providing adjustments for sample size would reduce many of these equations, although only by a small 

amount. Only 5% of them will change more than 10% of the original R2-value (16% would change more 

than 5%)—5% of the provided equations would result in an adjusted R2 of less than the 0.5 threshold the 

Handbook guidelines set for retaining the equation-form of the rate. 
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use, homogeneous, general urban or suburban31 developments with little or no public 

transit service and little or no convenient pedestrian access” (Institute of Transportation 

Engineers 2014, 6)—although the proportion is unspecified. While one can assume this 

description does not likely represent all land-use categories—e.g., high-rise residential 

development are not likely to have all of those things—one may interpret this to mean 

that these sites represent only the most “suburban” of suburban contexts.  

Furthermore, ITE’s data include a non-random convenience sample, data donated 

by industry and agency practitioners, and academics from the US and Canada. There is 

no public information on how many observations are provided by each donation source. 

It may be assumed that these data either come from (1) a research study, or (2) 

transportation impact studies. Data from the former may include larger sets of data across 

a wider range of contexts, but are likely collected within a smaller number of regions or 

cities. There are many potential reasons why a TIS analyst would collect new data: (a) 

there may not be any data for the land use being studied, (b) the available data may not 

represent the spatial, temporal, or social contexts of the study location, (c) the agency 

                                                 

3131 “General urban (GU)” and “general suburban (GS)” area-types are defined by ITE’s 3rd edition 

Handbook (Institute of Transportation Engineers 2014). GU was only recently added in the 3rd edition, and 

does not reflect data included in the 9th edition Manual (Institute of Transportation Engineers 2012), which 

are still considered primarily suburban. GU is generally defined as areas with slightly higher densities (low 

to medium) with a mix of residential and commercial uses and occasional industrial, institutional, or 

educational uses.  
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may require new local data be collected, (d) the proposed development may be on a 

problematic corridor that triggers a more thorough review, or (e) the developer or 

practitioner may feel ITE’s rates are not representative of the proposed development. For 

all reasons but the first, the incentive to collect data may relate to observed changes in 

vehicle trip generation rates due to spatial, temporal, or social contexts. While the authors 

are not able to investigate motivations of donated data, we do explore the implications of 

temporal, spatial, and social contexts in the following results section. 

Compiling the Data 

To explore the variation in these rates across and within land uses, the authors 

were provided free access to ITE's data through the third party online website, OTISS. 

This website provides two variables not provided in the paper-edition of the Handbook: 

region (e.g., Pacific, Central, Mountain, or Eastern) and year of data collection (dating 

from 1907 to 2015).  

Data were assembled through the online interface, querying across the age of the 

data and region. A small portion of trip rates lack either year or region of data. For the 

purpose of this analysis, these counts have been ignored. Some counts are shown with 

multiple independent variables (e.g., square footage, dwelling units, and employees). By 

examining data provided through ITE and OTISS, one cannot distinguish which data 

points were collected from the same location.  
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Results 

Temporal Contexts 

Year Data Were Collected 

The years that each of ITE’s Handbook data points were collected is a topic rarely 

discussed at length. The year associated with ITE’s data can be obtained, for a fee, by 

using a third-party online system: OTISS. Using OTISS, data can be filtered by age and 

region (e.g., Pacific, Central, Eastern, and Mountain). This allows for more regional and 

temporal definition in analysis. In a descriptive analysis of ITE’s 9th edition Handbook 

(2012), only 4% of data points provided were collected32 between 2007 and 2017—half 

as much as collected prior to 1970 (8%)—and 23% collected between 1997 and 201733. 

Figure 5-1 includes the distribution of data from 1955 to the present34.   

                                                 

32 We assume the date associated with each data point describes when the data are collected, 

making it a conservative quantitative exploration of age. However, it is possible this date describes the year 

in which the data were reported or submitted. Some reports may have included multiple data collections 

ranging from several years prior to the submittal. 

33 Recently, ITE conducted another successful periodic “call for data” with the hope of updating 

both the baseline and urban trip generation site counts, emphasizing the need for person trip generation 

data. They hope to incorporate these new data in the 10th edition of the Manual. 

34 Not included on this graphic: 1.1% of the data were collected prior to 1955, and 0.1% of data 

not associated with a date of data collection. 
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Figure 5-1 Temporal Distribution of ITE's Data Sample (left) and Timeline of Major Events (right, overlaid) (1955 to 2017)  141 
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Additionally, a rough timeline of major U.S. events that likely shape US travel 

patterns is shown in Figure 5-1. For example, four major pieces of legislation occurred35, 

each shaping the way that transportation networks are funded and implemented (e.g., 

interstates, transit networks, multimodal projects). Three major economic crises were 

noted (1973, 2000, and 2008), each tied to either constrained household budgets or rising 

prices for goods and/or travel. Within this period, carsharing and bikesharing entered the 

U.S., a resurgence of modern light-rail and streetcar systems were built and internet and 

smartphones were introduced. This punctuates the changes and transformations that have 

occurred during the time span for which ITE data represent. This is not to say that all of 

these events and innovations have led to observable changes in transportation and land 

use, but rather to note that a lot has changed. Applying these older data without 

considering how these events influence travel behavior is misguided. 

Although sites with recent data are added to the ITE collection, there is no policy 

to sunset data or remove data from active use, but ITE does conduct “[s]tatistical tests  

including combinations of variations from averages, standard deviation expansion, 

clustering of recent data, R2, T-tests, and F-ratios) [to] determine if differences are 

significant between older data and newer data” (Institute of Transportation Engineers 

2014, 7). Results of these tests are not publicly documented. The only acknowledgement 

                                                 

35 The Federal-Aid Highway Act of 1956; the Intermodal Surface Transportation Efficiency Act of 

1991; the 2005 Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users; and 

the American Recovery and Reinvestment Act of 2009. 
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of changing rates over time—based on a published note (to the best of the author's 

knowledge)—are for banking establishments collected prior to 2000. The note declares 

that walk-in and drive-in were determined to be significantly different (the method used 

was not identified). These data were removed from the publication (ITE User's guide, 8th 

edition, page 4). In 1985, Keller and Mehra found no statistical evidence when testing for 

differences in trip rates before and after the 1973 energy crisis (Keller and Mehra 1985a). 

There were no recommendations to remove data because of this analysis. The authors 

used t-tests to compare the differences between non-normal distributions, but the 

implications of this were not discussed. Instead, ITE’s Handbook provides rates that are 

an aggregation of all data, an average with equal weighting of older and new data. 

An analysis of eight of ITE’s retail and service categories from the 9th Edition 

Manual (2012) found that the age of the data were significantly and positively related to 

the vehicle-trip rates for every category, with elasticities varying between 0.2% and 2.4% 

(see Table 3-7 and Table 3-8 in Chapter 3). This does not necessarily mean that rates 

decrease as time goes on. Instead, these results indicate that the vehicle-trip rates derived 

from older data inflate the amount of vehicle demand for today’s contexts (Chapter 3). 

Without more information about each data point, the causes of these significant 

changes in rates over multiple decades are difficult to untangle. The relationships 

between the age of ITE’s data and patterns of data collection are ill understood. For 

example, this difference may be related to how site selection changed over time. It is also 

possible that overall variation in the costs of travel (e.g., fuel, vehicle ownership) have 

changed. Or that accessibility toward alternative modes have improved (e.g., as transit 
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networks expand to suburban areas). The number of sites and the year of data collection 

may also be associated with the growth (or decline) in development of specific industries. 

For example, recent requests for data on the ITE forum include marijuana dispensaries, a 

new and emerging land use. Similarly, data are often collected and donated in waves as 

part of larger studies, potentially correlating the year of data collection with trends in 

funding for larger studies. 

Continuing to use these older data are not the standard practice in other parts of 

the world. In the United Kingdom, for example, data older than 10 years of age is 

decommissioned. They rely an annual data collection that feeds back into general land-

use categories and contexts (Trip Rate Information Computer System (TRICS) 2017). In 

other aspects of transportation planning, data are discarded or replaced with updated 

information, and for good reason. Other studies have noted changes in behavior over time 

as the relationship between trip-makers and land use changes with changes in technology, 

options, culture, and costs (Chandrasekharan and Goulias 1999; Nelson et al. 2015), and 

relying on old data biases estimates and forecasts (Flyvbjerg, Holm, and Buhl 2005). 

Specifically, behavior changes as transportation (or destination and activity) options 

become more/less accessible or costly. And there have been substantial changes in the 

world of transportation during the timeline within which most Handbook data were 

collected. 

Defining Peak Hour 

Other temporal aspects of the data collection and processing protocols also lead to 

an inflated sense of vehicle demand, in part derived from the need to make conservative 
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assumptions in how we estimate and treat demand. The definition of “peak hour” is one 

of them. 

For agencies that specify the guidelines against which development is evaluated, 

the peak hour is the most common time period (Clifton, Currans, and Muhs 2012; 

Bochner et al. 2011; Keller and Mehra 1985b), aligning the evaluation of development 

along with the worst time periods for vehicular traffic congestion on adjacent streets: the 

7:00AM to 10:00AM peak and the 4:00PM to 7:00PM peak. To evaluate impacts, trip 

generation rates are identified in the Handbook. These rates are often referred to as 

“average peak hour” values, but a more apt designation should be “average maximum 

peak hour”. The difference in these small details is expressed and quantified in the 

following subsections. 

Current methods require a two to three hour series of 15-minute counts to be 

collected during the morning and evening peaks36. The analyst then calculates a moving 

hourly sum37 for each complete and consecutive hour of data collection (four 15-minute 

count periods). An example is provided in Figure 5-2 below. Here, person-trip counts 

were collected in 15-minute increments between 7:00AM and 10:00AM at a mixed use 

                                                 

36 The data collection form can be found online at http://library.ite.org/pub/e278c427-2354-d714-

5104-02d600087399 (accessed May 29th, 2017). 

37 Similar to a “moving, running, or rolling average”, a moving sum computes the hourly counts 

for each consecutive hour of data collection (four 15-minute counts). 
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residential development in Washington, DC by the District Department of Transportation, 

or DDOT (2015). Nine moving hourly sums were computed across the three hours of 

data collection, as depicted by the solid line. ITE, by definition, retains the highest 

complete and consecutive hourly count38—the maximum moving hourly sum—here 

depicted by the dashed line at 8:00AM to 9:00AM at just over 140 person trip ends. The 

average hourly count for this site—the average moving hourly sum—is depicted by the 

dotted line at just under 125 person trip ends.  

                                                 

38 The author could not find a written explanation for this subtle decision in the data processing 

protocols. The guideline to retain the “highest” consecutive hourly count comes not in the Handbook itself, 

but in a footnote on the recommended data collection and submission forms. 
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Figure 5-2 An Example of Two Definitions of Peak Hour: Maximum (dashed line) versus Average 
(dotted line) (Data Source: DDOT (2015), Building ID #1, AM Peak) 

For this example, the percent difference between the maximum and average can 

be computed by taking the difference between the two and dividing by the average. 

While the maximum will always be greater than or equal to the average sum, in this 

example, the maximum moving hourly sum is 15% greater than the average moving 

hourly sum. To explore the variation in the difference between these two definitions, two 

data sets are explored. 
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Considering that all peak-hour data collected and processed within ITE’s 

guidelines include the maximum sums, it can be deduced that the peak-hour average rates 

represent the highest volume of consecutive hourly traffic and not average conditions. To 

estimate how much these data collectively vary from a true peak-hour average, we 

explore the differences for two data sets: 62 residential and mixed-use residential 

buildings from Washington, DC (District Department of Transportation 2015), and 78 

retail and service establishments from Portland, Oregon (Clifton, Currans, and Muhs 

2015). To compute these differences all data—collected in 15-minute increments during 

the AM and/or PM peak periods—were converted into moving hourly sum counts, 

computing both the maximum count and the average count. The Portland, Oregon data 

were only collected between 5:00PM and 7:00PM in the PM peak, and therefore only 

five moving hourly sums were computed; the DDOT data, as described earlier, were 

collected during two three-hour peaks: 7:00AM to 10:00AM and 4:00PM to 7:00PM. The 

values computed represent the difference between the maximum moving hourly sum and 

the average moving hourly sum as a proportion of the total average moving hourly sum39. 

                                                 

39 Equation for reference: 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 100 ∗

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑔𝑔 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑆𝑆𝑆𝑆𝑆𝑆

. 
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This percent difference represents how much higher the maximum sum is from the 

average sum in terms of total observed person trips40. 

  

                                                 

40 Although trips observed are often expressed as a ratio of counts to the exposure or size of 

development (e.g., dwelling units or square footage), these independent variables vary for the observed data 

sets. Additionally, the same variable would be used to compute both the maximum and average 

summations, canceling out the benefit of examining these data using rates in lieu of counts. 
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Figure 5-3 Percent Difference between Definitions of Peak Hour for Residential Mixed Use: 
Maximum (ITE’s Definition) versus Average Moving Hourly Counts (Data source: DDOT (2015), 62 

Buildings, 3-Hour Peak Counts) 
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Figure 5-4 Percent Difference between Definitions of Peak Hour for Retail and Service Uses: 
Maximum (ITE’s Definition) versus Average Moving Hourly Counts (Data source: Clifton (2015), 78 

Establishments, 2-hour Peak Counts) 

Considering first the residential data (see Figure 5-4, top), the maximum definition 

contributed to an inflation of reported person-trip rates between 4% and 55%, or 23-24% 

on average for AM and PM peak periods. Similar results were found when examining the 

retail and service data (see Figure 5-4, bottom). The maximum count was between 4% 

and 59% higher—or on average 19% higher—than the average rate.  
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Person Trips to Vehicle Trips, and Other Multimodal Information 

In the previous analysis, we use person-trip rates collected from two different 

studies to demonstrate the potential differences between these two peak-hour definitions. 

It is useful to note that ITE does not publish the 15-minute counts, but rather the 

summarized Maximum observed values. While ITE is moving toward including more 

multimodal data and methods—particularly the provision of person-trip counts (such as 

those discussed in the previous subsections), multimodal mode shares, and vehicle 

occupancy rates—this aspect of rate calculations remains the same (Institute of 

Transportation Engineers 2014). 

It is generally understood that the primary benefit of ITE’s Handbook is to aid in 

the evaluation of transportation impacts on new development—particularly when 

comparing the added traffic (estimated using ITE’s rates and the volumes of existing 

traffic on adjacent facilities) (Keller and Mehra 1985b). Initially, the impetus for these 

data are to provide an quick reference method to estimate demand such that the adjacent 

facilities can be evaluated against corresponding vehicle performance metrics (e.g., level-

of-service). However, when only a single performance metric is used for evaluation, the 

typical engineering response is to provide a conservative comparison, ensuring that 

failure is not likely to happen. Collecting the highest count during the peak hour, in lieu 

of an average count, is similar to building in a factor of safety. This ensures that when 

nearby facilities are evaluated, they will be less likely to fail in the worst case scenario: 

maximum observed peak-hour counts. The resulting data set includes the compiled 

averages of maximum peak-hour counts derived to be conservative, preventing the 
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potential underestimation of vehicle demand. The implications of this practice are 

explored in the Discussion and Conclusions sections later in this chapter. 

Spatial Contexts – Built Environment and Accessibility  

The travel behavior literature has established that observed behavior varies across 

different regional and local accessibilities (Handy 1992; Levine et al. 2012) and the 

conditions of built environment (Ewing and Cervero 2010; Stevens 2017). In fact, most 

of the recent studies focusing on improving the trip generation methods aim to account 

for the built environment and accessibility (Currans 2017); however, most of these 

methods continue to rely some adjustment of ITE’s baseline suburban sites, making the 

assumption that all of ITE’s data represent development within some average suburban 

context. Few have explored the context from which ITE’s Handbook data are collected, 

and for good reason: ITE does not currently provide information on the location of each 

data point41. 

ITE suggests submitted data be categorized by generic place types (e.g, Activity 

Center, Central Business District, General Suburban; see full descriptions in (Institute of 

                                                 

41 ITE is exploring improving the transparency of locations in newly collection data, including 

measures of the built environment and potentially some generic geolocation identification (e.g., census 

block group) in the upcoming update of Handbook (Bochner et al. 2016). They are also exploring the post-

processing of older data to acquire more detailing information about each site with the hope that providing 

this information will spur more conscious considerations about the currently ubiquitous urban use of these 

suburban data. 
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Transportation Engineers 2014, 131)). Data are then sorted, mostly suburban sites being 

included in the Handbook data (Institute of Transportation Engineers 2014, 6). But 

perhaps not all “suburban” locations are created equal. In a 2015 study of retail and 

service establishments across the Portland metropolitan area, including suburban 

locations similar to those defined by ITE’s sites, the researchers found that sites 

generated an average of 20% mode share for walking, biking, and transit trips (Clifton, 

Currans, and Muhs 2012). Along those lines, some land uses are inherently more urban 

than the “suburban” assumption gives them credit. Spatial context is sometimes captured 

in the land-use category definitions (e.g., high-rise residential buildings with 10 or more 

stories). 

Fortunately, there are several methods in development to control for spatial 

context, including: population and/or employment density, distance to central business 

districts or accessibility, and access to transit, to name a few (Schneider, Shafizadeh, and 

Handy 2015; Clifton, Currans, and Muhs 2015, 2015; Ewing et al. 2011). 

Social Contexts 

Demographics 

Another aspect commonly associated with changes in observed travel is the trip-

maker’s socio-demographic and economic characteristics. The travel behavior literature 

has long established a correlation between socio-economics and –demographic and travel 

behavior, with characteristics including, but not limited to: age, gender, household 

income, vehicle ownership, presence (and age) of children, and household size. In travel-
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demand models, trip generation is modeled as a function of several social and spatial 

characteristics, the most popular including: income, car ownership, household structure, 

and family size (Willumsen and Ortúzar 2001, 126). These characteristics are a 

requirement for household activity survey collection (Willumsen and Ortúzar 2001, 77) 

as income or vehicle ownership of residents are often included in home-based travel 

behavior studies, e.g., (Guo, Bhat, and Copperman 2007; Ewing, Deanna, and Li 1996; 

Pas 1985). Developers often consider income—coupled with population distributions—

during the location decision process (Hernández and Bennison 2000; Clarkson, Clarke-

Hill, and Robinson, 1996). 

These characteristics are rarely incorporated into evaluating development-level 

transportation impacts (Currans 2017), despite some direct evidence that supports its use. 

For example, a study by Reid (1982) compared home-based vehicle-trip rates from the 

1979 National Personal Transportation Survey from the Southern California Association 

of Governments (SCAG) with ITE’s residential rates. After controlling for income, 

household size, visitor and customer service trips—as well as access to transit—the 

author found that ITE over-predicted average SCAG households by 30%. For low-

income housing, ITE’s rates may inflate the vehicular demand further. In 2005, a national 

study of low-income adults found that a quarter of participants did not participate in out-

of-home trips (Giuliano 2005). In California, two current studies are investigating the 

reductions in vehicle-trip rates for low-income housing citing the over-estimation of 

vehicular demand as a major barrier for developing affordable housing7.  
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The direction and size of the relationship between trip generation and 

demographics may vary for different land uses. In Chapter 4, the relationship between 

transaction counts—a proxy for person-trip counts—and income is evaluated for two 

retail land uses. For convenience markets, the results indicate that for every 1% increase 

in area-wide income (per $10,000) we observe a 0.05% decrease in PM peak-hour 

transaction counts. For a similar increase in income, we observed a 0.36% increase in PM 

peak-hour transaction counts for grocery stores (see Table 4-7). 

Despite this evidence, only three existing methods of trip generation estimation 

have tested for or include some demographics (see Table 2-3 in Chapter 2). First, 

Schneider (2015) found a significant and negative relationship between access to a 

university—a student population—and observed vehicle trips. This suggests that 

proximity to a university would result in lower observed vehicle trips, compared to ITE 

trip rates. Second, Ewing et al. (2011) found a significant and negative relationship 

between the household of size of the trip-maker and home-based work trips, home-based 

other trips, and non-home-based trips. These results were echoed in a second paper by the 

same authors when they expanded the six-region study area to 13 (Tian et al. 2015). 

ITE’s data occasionally controls for demographics through the land use definition, 

segmenting out “luxury” apartments or “discount” goods (Institute of Transportation 

Engineers 2012).  

Land Use Categorization 

It is also not clear that the extensive segmentation of land-use categories improves 

the accuracy of analysis. ITE’s rates are segmented into over 170 different land-use 
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categories—more than a third of which represent retail and service uses. The variation 

explained by these classifications does not necessarily outweigh the costs of collecting 

enough of a sample for each category. Furthermore, these uses do not necessarily provide 

parity with the generalities of (1) zoned designations of land use (e.g., commercial, 

residential, industrial, mixed use), (2) transportation demand forecasting models (e.g., 

home-based work trips, home-based other trips, work-based other trips), or (3) activity 

purposes in household travel surveys (e.g., eating outside of the home, retail shopping for 

heavy goods, visiting friends)—all three of which supplement and support regional 

comprehensive plans for land use and transportation.  

In Table 3-3, the statistical contribution of ITE’s taxonomy is examined for retail 

and service land uses. The authors find little benefit in the variation explained by the 63 

categories—compared with an aggregated classification of two indicators of land use 

(convenience land or heavy goods retail). And less so when considering the costs 

associated with the extensive data collection necessarily to populate a minimum sample 

(four observations) for each retail and service category (approximately USD$2.1-2.7 over 

10 years, which includes the sunset of data more than 10 years old).  

Summary and Case Study 

In the previous results section, we examined several issues identified with the 

temporal, spatial, and social contexts of ITE’s Trip Generation Handbook as they are 

applied directly by many agencies (Clifton, Currans, and Muhs 2015; Bochner et al. 

2011) and indirectly in many innovative methods (Ewing et al. 2011; Clifton, Currans, 

and Muhs 2015; Schneider, Shafizadeh, and Handy 2015). For each of these methods, we 
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identified the results of each issue, as it relates to vehicle trip generation rates (see Table 

5-1). Five major issues have been examined—four of which are addressed in this 

dissertation and the fifth was supported by the author’s thesis. For example, to control for 

the built environment, a mode share and vehicle occupancy adjustment model is applied 

(Currans and Clifton 2015, 100, 102). Adjustment A and C estimate adjusted vehicle-trip 

rates. Adjustment D estimates transaction counts—a proxy for activity levels—for 

different income levels.  

Each of these studies explores the independent relationship of each issue to 

changing trip rates, but it is likely that these issues have some cumulative effect as well. 

In this section, the cumulative impacts of issues in urban trip generation estimation data 

and methods are quantified.  
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Table 5-1 Result in Misapplication of Temporal, Spatial, and Social Contexts in ITE's Trip 
Generation Handbook 

Contexts Results Adjustment Method to Estimate Result 
Temporal     

Year data are 
collected 

Increases vehicle 
demand 

A Chapter 3 

Definition of peak 
hour  

Increases vehicle 
demand 

B Chapter 5 - Figure 5-4 
Summary 

Spatial     
Built Environment Increases vehicle 

demand 
C (Currans and Clifton 2015, 

100, 102) 
Social     
Demographics Varies by land 

use and 
demographic 

D Chapter 4 – Table 4-4 Peak-
hour Model 

Land Use 
Categorization 

Varies by land 
use 

A Chapter 3 - Table 3-7 Model 
M2 (b) 

 

To demonstrate how these biases compound throughout vehicular trip generation 

estimation, we explore case studies of two retail land uses: convenience markets (open 24 

hours, ITE land use code 851) and supermarkets (ITE land use code 851). Since context 

matters, three area type scenarios (suburban, general urban, and urban district) and three 

income scenarios (area-wide median annual household income at a high-, middle-, and 

low-level) are created. For each of these cases, scenario definitions are described (see 

Table 5-2). These variables are necessary to quantify each adjustment. Adjustment A 

from Table 5-1 is a constant value for all scenarios. Adjustment B is a simple equation 

that does not require additional information. 
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Table 5-2 Scenario Characteristics Considered for Case Study 

  Units Required for 
Adjustments Scenario Definition 

Built Environment  
  Suburban General 

Urban Urban District 

Regional 
Accessibility1 

Unitless Chapter 4 0.2 0.4 0.7 

Distance to 
Central Business 
District2 

Miles (Currans and 
Clifton 2015) 8 6 3 

Activity Density3 People per 
acre 

Chapter 4 10 35 60 

Population 
Density4 

Residents per 
acre 

(Currans and 
Clifton 2015) 8 25 40 

Demographics 
     

 
  High Middle Low 

Income5 

Median 
Annual 

Household 
Income 

Chapter 4 $80,000 $50,000 $30,000 

Note: 
1 Defined as Jobs accessible within a 45-minute drive, weighted by a travel time decay function and 
normalized by the regional total and maximum accessibility value at a block-group level (Regional 
Centrality Index), unitless; Smart Location Database, Variable D5cri. 
2 Defined as Euclidian Distance of Destination to the Regional Central Business District (CBD) in 
Miles. 
3 Defined as Sum of gross population and employment on unprotected land per acre at a block-group 
level; 2010 Smart Location Database, people per acre; Variable D1b + D1c. 
4 Defined as gross population on unprotected land per acre at a block-group level; 2010 Smart Location 
Database, residents per acre; Variable D1b. 
5 Defined as Median household income at a block-group level; 2014 American Community Survey (5-
year), Variables B19013. 
6 The relationship between age and trip rate was not explored in Chapter 3 for supermarket land uses. 
Here we apply the findings from “shopping center” (land use code 820). Shopping center is often 
applied to supermarket development were additional retail development is included in the same site.  
7 The relationship between age and trip rate was not explored in Chapter 3 for the example 
“Convenience Market (24-hour)”. Here, the relationship identified for convenience market with gas 
station (land use code 853) is included. 

The estimated percent error is defined by the following equation, and provided in 

Table 5-3 for each land use and scenario. 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  100 ∗  
(𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸
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Suburban area-types reflect most of ITE’s data. However, not all suburban area-

types are alike. The quantitative descriptions of “suburban” area type are more “urban” 

than ITE’s—thus even suburban areas, as defined in Table 5-2 are estimated to have less 

automobile demand than ITE. Additionally, ITE does not (yet) collect or provided 

demographics for their data. Here, we assume ITE’s data represent an approximately 

median value of annual household income ($50,000). Error is estimated for low- and 

high-income scenarios relative to this middle value. To adjust the original trip rate for 

each scenario, the percent error is then applied to the ITE’s Trip Generation Handbook 

vehicle-trip rate, as described below: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 1) 

Each issue and scenario is applied independently to the trip rate in Table 5-3 

below to demonstrate the direct impact to each trip rate.   
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Table 5-3 Case Study Estimates of Error and Adjusted Trip Rate for Convenience Market and 
Supermarket Land Uses 

  
Convenience Market 

(LUC 851) 
Supermarket 

(LUC 850) 

 Method  Trip Rate  Trip Rate 

ITE Trip Rate1 

 [vehicle trips per  
  1,000 square feet] 

ITE’s 
Handbook 

 52.4 
 

10.5 

Type of Error/Scenario  Error2 Adjusted 
Trip Rate3 Error2 Adjusted Trip 

Rate 

Generic Land Use with 
Data < 10 Years Old4 Chapter 4 71% 30.6 74% 6.0 

Peak-hour inflation5 Chapter 3 20% 43.7 20% 8.8 
Built Environment Thesis6     

Suburban 
 45% 36.3 45% 7.3 

General Urban  100% 26.2 100% 5.2 
Urban District  339% 11.9 339% 2.4 

Demographics Chapter 5  
 

 
 

High Income  35% 38.8 -38% 17.0 
Low Income  -18% 64.0 38% 7.6 

Notes:  
1  Average ITE Vehicle-trip rate for the Weekday, PM peak hour of the adjacent street traffic 
(4:00PM to 6:00PM) collected from ITE’s 9th edition Manual (Institute of Transportation 
Engineers 2012). It is measured as vehicle trips per 1,000 square feet. 
2 Error is defined as 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  100 ∗  (𝐼𝐼𝐼𝐼𝐼𝐼 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸−𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 [percent]. A positive value 

indicates ITE’s rate overestimates, on average, for the given context.  
3 The adjusted trip rate is defined as 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  (𝐼𝐼𝐼𝐼𝐼𝐼 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 1). 
Each adjusted rate is calculated for the specific scenario indicated in the left-hand column. 
4 The regressions examining the relationship between age and vehicle-trip rate were not 
developed for predictive purposes. Instead of estimating the correction for age directly, we 
apply the generalized land use rates developed in Chapter 4, Table 3-7, Model M2 (b). For 
convenience markets, C=1 and H=0. For supermarkets, both C and H =0. 
5 The peak-hour inflation ranged from 6% to 60%, with the average values between 20-25%. A 
conservative value is calculated here. 
6 The method used to estimate reductions in vehicle-trip rate for the built environment can be 
found in (Currans and Clifton 2015). 

If we assume these errors are multiplicative—that one may apply the adjustments 

together, one after another—a cumulative adjusted rate can be estimated, accounting for 

all four potential biases identified (see Table 5-4). For both land uses, the compounding 

adjustment for all five contextual issues results in the vehicle-trip rates that are 
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significantly—and often severely—lower than ITE’s Handbook rates. Note that even in 

contexts where ITE’s data are recommended for application (suburban, middle income 

levels), ITE’s vehicle-trip rates still overestimate demand by 100% or more of the 

cumulatively adjusted trip rates (52.4 versus 17.6 and 10.5 versus 3.5 in Table 5-4) for 

both land uses. The supermarket scenarios are depicted further in Figure 5-5, where each 

adjustment is added in a cumulative manner (one after another).  

Table 5-4 Case Study Vehicle Trip Generation Rates Adjusted for Age, Peak-hour Inflation, Area 
Type, and Income 

  Income 
Convenience Market (LUC 851) 2   

High Middle Low 
Area 
Type1 

Suburban 13.1 17.6 21.5 
General Urban 9.4 12.7 15.6 
Urban District 4.3 5.8 7.1 

Supermarket (LUC 850) 2  
High Middle Low 

Area 
Type1 

Suburban 5.6 3.5 2.5 
General Urban 4.1 2.5 1.8 
Urban District 1.9 1.1 0.8 

Notes: 
Adjustments were applied in the following order: (a) Data < 10 
years of age, (b) peak-hour inflation, (c) area type, (d) income 
level. 
1 Area type and income ranges are described in  
Table 5-2. 
2 Original vehicle trip generation rates from ITE’s Manual were 
52.4 and 10.5 vehicle trips per 1,000 square feet for convenience 
markets (land use code, LUC, 851) and supermarkets (LUC 851), 
respectively. 
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Figure 5-5 Case Study Vehicle Trip Generation Rates for Supermarkets - Adjusted Cumulatively for 
Age, Peak-hour Inflation, Area Type, and Income 

There are limitations to this application. Although the adjustments suggest 

convenience market vehicle-trip rates would increase for lower-income areas, it is more 

likely that overall person-trip activity increases, but automobile mode share estimates 
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decrease. The Chapter 4 estimate adjustment—an analysis of transaction counts—reflects 

variation in overall activity levels sensitive to area-wide income, but the mode share 

adjustment (Currans and Clifton 2015) is not sensitive to variations in income. When 

methods are not consistently sensitive to the same metrics of temporal, spatial, and social 

contexts—the multiplicative application of these adjustments may over correct for some 

scenarios and under correct for others. Overall, however, in most scenarios, ITE’s 

vehicle-trip rates inflate demand for vehicles—compounding error from misapplication in 

contexts not reflected by the original data. 

Conclusions 

Perhaps the most alarming outcome of this study is the degree of inflation of 

vehicle trip generations for all scenarios. These data are widely used in agencies across 

the US and Canada in many aspects of the development review process: transportation 

impact analyses, impact fees, system development charges, utility fees, and estimating 

vehicle miles traveled estimation. For all of these uses, the overestimation of automobile 

impacts results in higher charges and more automobile mitigations. The propagation of 

these impacts, even in areas where the adjusted rates are closer to ITE’s rates, results in 

the pernicious over-supply of automobile facilities across cities of all sizes. 

One possible outcome of the inflation of automobile demand may also influences 

the land development process itself. For new development, the estimation of vehicle trip 

generation is coupled with an analysis that evaluates adjacent facilities by a “level-of-

service” metric that grades the impacts on an A through F scale using various 

performance metrics (vehicle delay, vehicle density, etc.). In already developed areas, the 
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level-of-service may already be nearing the agency regulated “failure” threshold. In 

growing economies, where developers find a need to build more densely—and the local 

zoning regulations support it—inflated automobile demand estimates push developers 

scale their development to lower densities to meet thresholds. Thus, the zoned future 

densities planned to meet the regional goals would be inhibited by the very tools used to 

estimate the demand to evaluate these goals. 

Ideally, agencies will broaden the use of multiple alternative performance 

metrics—introducing each as a single piece of a larger puzzle for evaluating impacts of 

new development. In some cases, agencies are already aiming to do this—aligning and 

balancing the evaluation of development with regional and neighborhood goals and 

objectives, e.g., (City of Portland 2014; Kittelson and Associations 2014; Puget Sound 

Regional Council; City of Bellevue; King County Metro 2009). Concurrently, the 

Highway Capacity Manual (United States National Research Council 2010) now 

provides alternative and supplementary ways to evaluate the performance of non-

automobile facilities. Researchers and practitioners have partnered with ITE to integrate 

new data, protocols, and tools to estimate multimodal demand (Bochner et al. 2016).  

These new tools are used as a supplement to existing methods—adding the 

evaluation of bicycle level-of-stress alongside the evaluation of automobile level-of-

service. However, if ITE’s original data, still a common mechanism for subsequent 

adjustment methods, is consistently predicting a “worst case” vehicle-trip rate, can we 

say any process that includes these data as one of several outcomes is a fair and balanced 

process?  
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More research is necessary to understand the range of impacts these methods have 

had, or will have, on land-use development. As urban agencies move toward more 

sustainable objectives and goals that incorporate multimodal planning, reducing 

dependence on gasoline, and increasing the accessibility (and densities), it is clear that 

the methods used to determine development-level impacts warrant another look. In the 

meantime, extrapolating ITE’s data into contexts not originally controlled for may result 

in a self-fulfilling prophecy. Until we aim for where we want to go, we will struggle to 

achieve the future for which we planned.  
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CHAPTER 6 CONCLUSIONS 

This dissertation consisted of four papers, written as chapters. The first paper 

(Chapter 2) examined the issues and limitations of both innovative. Chapter 3 and 

Chapter 4 tested two assumptions commonly used in both the state-of-the-art and state-

of-the-practice. Chapter 5 evaluated the conventional methods (ITE’s Handbook) of 

urban trip generation for development-level evaluation of transportation impacts. Each of 

these chapters includes their own detailed conclusions. In this section, I discuss the 

findings more broadly, including implications for the development review process, 

recommendations for practice, study limitations and future work. 

Implications for the Development Review Process 

In Chapter 5, I explore the potential extent compiled bias of these data, so 

commonly used in development-review processes, when the spatial, social, and temporal 

contexts of application are ignored. The bias, in many urban cases, is extensive—

substantially overestimating demand, also known as “phantom trips” (Millard-Ball 2015), 

vehicle trips consistently estimated that never turn up. And since these data are used for 

some many different types of evaluation, the implication is that we are over-planning, 

over-charging, and over-mitigating for automobile demand at many retail and service 

land uses (and probably others as well).  

When new (or rezoned) development is assessed for automobile demand in urban 

areas, there are two potential outcomes (not mutually exclusive of one another). First, 

developers may be required to mitigate for impacts that indicate the “failure” of facilities, 

where estimated demand exceeds capacity—adding capacity to adjacent roadways, 
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access, parking, or intersections. This increases the estimated capacity of facilities to 

accommodate these “phantom” trips. Second, developers may be charged for their 

impacts in the form of impact fees, system development charges, or utility fees. In the 

case of urban retail (specifically food retail, as studied in this manuscript), development 

evaluated using these inflated automobile data are required to pay more money into the 

system than they are generating. Of course, this depends on the assumption that 

development will always only be evaluated using an automobile-based metric. 

Transitioning to a multimodal evaluation system may mean that development is required 

to pay for the pedestrian trips and bicycle trips generated—but the mitigations for this 

(particularly in urban areas) are likely less expensive than the costs of widening roadways 

or expanding intersections (especially with the costs of acquisitioning land). In some 

cases, this may reduce the amount of available land to develop for businesses or 

housing—requiring it to be used for additional automobile facilities (Manville 2017). 

However, in times of growth where there is more economic demand for 

businesses and residential units, there may be a far more damaging limitation to 

misapplication of these data outside of their intended contexts. For developers aiming to 

maximize the value of their land, these data and corresponding transportation impact 

studies may be used as a means for scaling development—identifying early in the 

permitting process how large the development may be built without triggering extremely 

expensive automobile mitigations (e.g., road widening, adding signalized intersections, 

upgrading facilities already at capacity). In these situations, developers may build some 

fraction of their desired scale. Here, the misapplication of ITE’s Handbook data in urban 
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locations, ignoring potential variations in social or temporal contexts, may suppress 

development—reducing opportunities for density, decreasing the ability for developers to 

maximize the value of their land, and decreasing potential monetary exactions accrued 

from larger developments (e.g., additional apartments, more retail, more office space) for 

local agencies. These data—originally developed explicitly traffic engineering 

purposes—are then quashing development, constraining the ability for the land use to be 

fully maximized in accordance with zoning plans. While some have quantified the costs 

of overestimation in terms of requiring automobile mitigations, overcharging 

development, and overbuilding automobile facilities on potentially developable land—the 

extent of this suppression problem, a case of stated and revealed preference for 

development scale, is an area for future research. 

Looking to the future, these findings may only worsen. These data are used to 

predict a future—estimating potential demand of land use. However, these data often do 

not reflect the changing landscape of transportation options, policy or land use. With the 

advent of autonomous vehicles, some agencies may set their sights on vehicle-based 

transportation charges—shifting from charging development for automobile demand, to 

charging the user directly. This may not remove the need for development-level review 

entirely—agencies may still wish to assess non-automobile demand and mitigations to 

meet their regional or neighborhood goals for health, safety, or accessibility, for 

example—but it could likely shift the focus of automobile-mitigations from a site-level 

evaluation to regional-level evaluation. Similarly, the way in which individuals interact 

with land use is also likely to shift. With the rise of online retailers and services, many 
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brick and mortar have been closing their doors, some opting for online versions of 

themselves entirely. And yet, data from mid- to late-century department stores, shopping 

centers, and big box retailers are continually applied for new retail—despite declining 

use. 

The underlying problem of the reliance of these data is that they are often 

misapplied in contexts and applications for which they were not originally intended. They 

were developed for the purpose of evaluating adjacent automobile facilities, evaluating 

counts of vehicles through intersections—not for multimodal facilities, not for system 

development charges, not for estimates of vehicle miles travelled, not for scaling 

development, all of which are common uses of these data. Second, these data were never 

intended for urban applications—or even for suburban applications where there is desired 

non-automobile demand. Third, these old data are being used to predict the future, in a 

world where the way in travel is changing, and rapidly. 

And yet, the continued reliance of these traffic data could be harming the very 

regional goals and plans agencies intend to achieve by overcharging development, 

overbuilding automobile facilities, and potentially suppressing economic development. 

So, where do we go from here? 

The underlying conclusion of this research is that ITE’s Handbook data and 

methods are not suitable tools to evaluate sustainable, multimodal development. 

Alternative approaches to development-level review require sensitivity of the travel 

outcomes to deliverable metrics identified in regional or neighborhood plans or goals 

(such as walkability, safe routes to schools, equitable access to affordable food, or 
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limiting emissions exposure to all facility users). These new methods should be 

developed under the guidance of multiple stakeholders, for example: policy makers, 

developers, transportation and land use planners, landscape architects, economist, 

academic researchers, travel behavior specialists, and traffic engineers. Given the 

numerous purposes for development-level review (e.g., assessing charges, evaluating 

adjacent facilities, examining emissions impacts, meeting regional or local goals, 

assessing equitable access), not every outcome (or scale of measurement) may be 

relevant for every type of review or assessment.  

Furthermore, as rapidly as technology changes, behavior at and around different 

land uses and activities is also changing. The ability to evolve practice quickly, creating 

flexible tools that change as research and understanding change, will be necessary.  

Beyond that, using older data collected prior to these numerous changes leads to 

issues when applying it in a predictive manner, particularly when those data are more 

than a decade (some half a century) older than the current development. How does using 

old data provide an adequate proportional nexus when planning for the future? Or rather 

when these old data—collected from unrepresentative suburban locations—conflict with 

more comprehensive regional plans (e.g., transportation system plans, comprehensive 

plans, each developed with substantial public insight), how might agencies use alternative 

data and methods to more broadly understand the range of impacts and corresponding 

trade-offs to make a decision that more adequately assesses the situation? This would 

likely depend on a number of travel outcomes and policy variables, more than a constant 
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“vehicle trips per square footage” rate applied for all flavors of development in all 

contexts.  

Considering all the issues described and discussed throughout this text, there are 

many reasons to be concerned about the use of these data—or perhaps this approach more 

broadly—for assessing the impacts of development on the transportation network. This 

begs the question, is this approach the best way to assess impacts? Or rather, are there 

better ways to get at the same result: estimating a proportionate nexus to share the burden 

of developing, operating, and maintaining the transportation system across users? 

Shifting practice’s thinking from the current framework for estimating demand, there are 

many ways this approach could begin to vary: moving from a development-level 

assessment to an individual trip-maker-level; shifting from automobile trips to overall 

activity (transactions, sales, person trips); changing the site-level scopes to something on 

the neighborhood scale; or broadening evaluation from a single transportation metric to 

multiple metrics. Given the likely technological changes on the horizon, acceptance of a 

more flexible or dynamic framework—perhaps taking advantage of ongoing data 

collection through big data sets or the willingness to accept multiple types of data or 

approaches—or of the inherent uncertainty in predicting the future demand would be 

useful as well. Alternatively, the current approach may be more attractive to existing 

users. However, given the findings from this research, continued use of this method and 

data will require significant investment (e.g., money, time, research) from stakeholders, 

including agencies, practitioners, developers, and ITE themselves. 
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Recommendations for Practice 

In the near term, there are several things agencies, ITE members, and practitioners 

(both planners and engineers) can do to make direct improvements to this process.  

Agencies 

Presentations and studies on innovations in trip generation are often written for 

the practitioner, but agencies have perhaps more autonomy in moving the state-of-the-

practice than any other stake holder. Agencies that require alternative data sources and 

methods with sensitivity to local contexts recognize the limitations of ITE’s data and take 

steps to correct them.  

A pooled fund study may be useful for agencies with fewer resources (including 

transportation engineering staff) to commit to testing, validating, and incorporating 

innovative data and methods into transportation impact review guidelines, and 

negotiating alternative rates. If half of the metropolitan organizations in the US (just over 

200 agencies) donate an average of $4,000 per year, 100 new multimodal person-trip 

counts could be collected annually. Pooled studies mean the data collection could 

incorporate strategic sampling (instead of convenience sampling), specific research 

questions could be addressed, and more comprehensive guidelines for accommodating 

local contexts could be incorporated.  

The reliance on a single metric for any type of evaluation means that any bias 

associated with that data—whether recognized or not—is introduced into the review 

process. Similarly, agencies should consider incorporating multiple alternative metrics. In 

the case of development-level evaluations, there is substantial evidence (in this 
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dissertation as well as the work of others) that the bias has led to the overdevelopment of 

automobile facilities, often inhibiting regional plans that call for more multimodal and 

livable goals. Agencies in California are certainly leading the way; shifting the focus of 

site-level review to vehicle miles traveled, but also opening the process up for 

incorporating metrics such as mode share. A shift away from an overwhelming reliance 

of ITE’s data also opens the door for improving the connectivity between regional 

transportation plan—with multiple goals and objectives—and site-level development. In 

the end, connecting these processes will encourage development to meet the needs of the 

community for which agencies represent. 

But these changes require more than just input from agencies.  

Institute of Transportation Engineers 

The development of ITE’s data has been a silo-ed process in the past. As a 

professional organization serving transportation engineers, the majority of the people at 

the table influencing these methods have been practicing traffic or transportation 

engineers. By reaching out to agencies and across disciplines to improve this practice, 

ITE could increase the applicability of their data to reach broader contexts. Continuing to 

balance committees and panels with representation from a diverse and balanced group of 

agencies—including engineers, planners, economists, developers, land scape architects, 

computer scientists—could speed up the process of improving practice, accommodating 

new issues identified, and innovating solutions. This may be the only way to incorporate 

and accommodate the numerous transformative technologies being developed.  
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One of the strongest recommendations ITE can make is to remove older data from 

active use. While there is not enough information to understand why vehicle-trip rates 

have changed over time, the limited contextual information provided for these data 

prevent a thorough understanding of ITE’s contexts. Decommissioning older data would 

remove approximately 95% of the existing Handbook from active use, spurring the 

demand for newer data.  

And with a growing demand for new data, ITE should consider broadening the 

types of data beyond multimodal person trip information—including information about 

trip length or vehicle miles traveled, parking and pricing information (a currently 

disconnected practice), and less considered metrics (travel time, comfort, economic 

expenditures). This may correspond with a more open approach to innovative techniques 

for capturing this information and reconciling it with existing metrics—like providing 

guidance for alternative data collection techniques, such as transaction counts or “big 

data”. ITE recommendations are often the only option for practitioners working in 

jurisdictions with few resources. Opening the scope of these data would provide more 

flexibility for agencies and practitioners to accommodate their own local contexts and 

goals. 

Practitioners 

The most important things practitioners can do to improve the state-of-the-

practice is to practice good professional judgment by advocating for contexts-sensitive 

methods and data and to find opportunities in share experiences and case studies so that 

others may to do the same.  
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Study Limitations & Future Work 

The specific limitations of each paper were discussed in the corresponding 

discussion and conclusions sections of each chapter. In this section, the broader 

limitations of this sort of research is explored, along with potential future work to build 

on this study. 

One of the most prevalent issues encountered in this research was related to the 

lack of transparency in ITE’s data discussed in Chapter 3, but also in Chapter 2 and 

Chapter 5. The lack of information associated with these data results in the inability to 

understand the contexts of ITE’s data. While ITE recognizes that good professional 

judgement requires the user to understand the “derivation and initial context” of data and 

methods before applying them, they do not provide adequate information to fully 

understand where and when their data should be used. Added transparency (e.g. location 

information, description of environs) is one way to improve the use of these data. 

Evaluating the costs and benefits of decision would be another improvement. In 

Chapter 3, the results indicated an aggregated land-use taxonomy for retail and services 

(three categories) preformed nearly as well as ITE’s more extensive taxonomy (32 

categories). Aggregating uses along these lines also provides a larger sample within each 

category—increasing the ability to control for contextual variables identified as important 

(temporal, spatial, social). 

One observation made while reviewing transportation impact studies from 

practice was the potential for prematurely scaling development by using inflated 

vehicular estimates in inappropriate contexts. This is particularly problematic where (a) 
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developers want to maximize density, (b) where zoning allows for higher densities (urban 

areas), and (a) the study area includes facilities nearing the ‘failure’ threshold. In these 

areas, using ‘off-the-shelf’ methods that overestimate demand means that everyone loses: 

the developer is not able to maximize their investment; the agency is not able to 

capitalize on the development by increasing density and capturing additional 

development charges; and the public has to adapt to an oversupply of automobile 

facilities and an undersupply of housing, work-space, and other destinations. 

Even with more robust methods, there still exists a fair amount of uncertainty in 

these data and methods—demonstrated in Chapter 4 the bootstrapped confidence interval 

was calculated to demonstrate the distribution of potential demand estimated. And yet, 

average trip rates often determine the recommendation for mitigations offered, with little 

to no reflection on whether the network improvement reflects broader regional goals or 

objectives (let alone if these “average” rates are biased). Perhaps a more adept approach 

to handling the limitations of these data would be to add additional performance 

measures that balance the flaws of ITE’s data with alternative metrics for evaluating 

demand and impacts. In this situation, ITE’s data would provide one piece of the TIS 

puzzle, and other impact outcomes could be considered in this process. This may open 

the door for alternative data collection technologies—such as the transaction counts 

analyzed in Chapter 4. 

A broader approach to evaluating development may also support the changing 

landscape of transformative technologies: autonomous and connected vehicles, 

information and communications, shifting distribution and warehousing mechanisms 
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changing the face of retail. If we can only guess at what the future holds, then perhaps 

relying on 50-year-old data may not be the best way to predict the future (Figure 5-1).  
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APPENDIX. COMPARING TRANSACTIONS AND TRIPS 

To compare the fundamental difference between transaction counts—a measure 

of economic activity—and person-trip counts—a measure of behavioral activity, we 

explore the characteristics of a trip that links these two data together. Although the author 

does not have access to transaction and trip counts observed over the same time span, this 

analysis considers the aspects that link transportation activity to economic activity. To 

begin, we identify the following variables: 

𝑙𝑙 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝑙𝑙 ∈ {𝑙𝑙, 𝐿𝐿} 

𝑖𝑖 =  ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜, 𝑖𝑖 ∈ {𝑖𝑖, 𝐼𝐼 } 

𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑏𝑏𝑏𝑏 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑐𝑐 ∈ {1,𝐶𝐶} 

The sum of customer groups, c, for any given hour, i, and location, l, sums to the 

total number of transactions for the given hour and location, such that:  

𝑇𝑇𝑖𝑖𝑖𝑖  =  𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙 

Each transaction is treated as an indicator of groups moving to and from the site. 

When using transactions to represent activity at locations, one must consider how 

participation for the activity, in this case grocery shopping, occurs. Specifically, we are 

investigating the assumption that group size does not vary by location indicators used in 

the transaction analysis, nor would it vary by time of day or day of week. To test this, we 

consider a 2011-2012 household travel survey (HTS) collected in Portland, Oregon, the 

same area that the transaction data were collected. We test this assumption using a subset 

of the survey, examining only those activities conducted during “routine shopping 
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(groceries, clothing, convenience store, household maintenance).” For site-level 

evaluations, there are limitations when using household travel survey data, particularly 

when attempting to connect activities recorded on the survey—explained based on trip 

purpose—and activities occurring at specific land uses—defined by the product or scale 

of the establishment. This is discussed later on in this examination. 

Since HTS data are collected at an individual household member level, there will 

exist multiple records for each unique group trip, each one for a different family member. 

Although HTS collect data for every member of the household, it also records how large 

the “group size” of each activity was so that one can determine if there were non-

household members participating in the activity. Aggregating the data so that each 

observation in the data set represents one group trip to the “routine shopping place” 

recorded is the first step to accomplish this. The location of the place is then geocoded 

and mapped to obtain commiserate values for each of the three location variables: 

regional accessibility, local accessibility, and area-wide median income. The time and 

day of the start of the activity (the entrance) and the end (the exit) were also recorded. 

To evaluate assumptions about groups size, the group size was regressed upon all 

three location variables as well as dummy variables for time of day and day of week 

using a negative binomial regression, which considers the count-based values of the 

independent variable. None of the coefficients estimated significantly contributed to the 

explanation of variance in group size; only the intercept constant, G, was significant. 

Thus, the assumption holds that group size of visitors observed at routine shopping 

establishments does not vary by location or time, and, therefore, remains constant: 
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𝐺𝐺 = 1.52 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

When relating transactions to person trips is contemplated, one must consider the 

relationship between the transaction itself and the times at which the participant arrived 

and left the site. We assume that a person exiting directly after a transaction in an hour, i, 

entered during the same hour only a little while earlier. But trips to the store are not 

planned on an hourly basis, and, therefore, some overlap between transactions in one 

hour, and entering trips in the hour before is likely (see Figure A-1). Here, we not only 

assume that the time period of transaction 𝑇𝑇𝑖𝑖𝑖𝑖 for any given customer is the same time 

period that the group exited the establishment, but also that we recognize that exiting 

after a transaction occurs likely takes a few extra minutes. 

 

Figure A-1 Examples of Three Visitor Groups who: (A) complete their activity within the same hour, 
Ti; (B) exit during the given hour, but enter during the hour previous, and; (C) enter during the 

given hour, but exit during the hour following 

To examine the relationship between the probability that customers arrive and 

leave within the same hour as the transaction, we create a binary variable that identifies 

any group that recorded arrive and departing the activity within the same hour of the day. 

This takes into account both variation in the duration of the routine shopping activity, as 



  199 

 

 

well as the arrival patterns of the groups, while making the interpretation comparable to 

transaction totals aggregated to the hour. We then regress this binary variable on location 

(regional and location accessibility and area-wide median income) and temporal variables 

(hour of the day and day of week) using a binary logistic model. The outcome or 

dependent variable being predicted can be expressed as the following: 

𝑃𝑃𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Similarly, it will be necessary to know the overlap of transactions (or departures) 

that occur during a different hour than the entrances, which can be described as follows: 

1 − 𝑃𝑃𝑙𝑙𝑙𝑙 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑 𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑎𝑎𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑜𝑜𝑜𝑜𝑜𝑜 

With the same sample of 3,144 trips stops for “routine shopping (groceries, 

clothing, convenience store, and household maintenance),” the following model is 

constructed, representing only the significant coefficients estimated for two indicators: 

location accessibility (ACTDEN) and area-wide median income (INCOME10k, in 

$10,000 annual dollars).  

𝑃𝑃𝑙𝑙 =
1

1 + exp(−(−0.28 + 0.53 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.043 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼10𝑘𝑘)) 

These results suggest that the probability that customers came and went during the 

same hour—which relates to both the arrival patterns of survey respondents as well as the 

duration of the visits—did not have statistically significant relationships between the 

regional accessibility nor any of the temporal variables. The results did indicate a 

significant relationship with local accessibility and income, however, suggesting that as 

either of those variables increases, so does the probability that customers will enter and 
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exit during the same hour. This analysis is not robust enough to provide a direct or 

conclusive idea as to why these indicators were significant, but similar significance and 

relationships were found when regressing the duration of the visit upon the same 

variables. This may suggest a relationship between shorter durations (and a higher 

probability that visits can be made within the hour) for areas with higher local 

accessibility and area-wide median incomes. Since the results suggest that this probability 

does not change over time, a given establishment will have one probability value,𝑃𝑃𝑙𝑙, 

calculated based on the location properties, l, of that establishment. 

To put this all together, we consider Figure A-1 above. The person trips, 𝑃𝑃𝑙𝑙𝑙𝑙, for 

location, l, and hour, i, can be calculated for the number of group trips occurring during 

every hour multiplied by the average group size. The number of group trips can be 

calculated from summing up: (A) all the group trips that arrive and depart within the 

same hour, 𝐺𝐺𝑇𝑇2𝑤𝑤𝑤𝑤𝑤𝑤; (B) the group trips that exit during the given hour (but enter in the 

hour previous), 𝐺𝐺𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, and; (C) the group trips that enter during the given hour (but 

exit during the following hour). For (A), we count all trips that likely occur within the 

hour, 𝑃𝑃𝑙𝑙, as two directions. For (B) and (C), we count only the one direction that occurs 

during the hour, (1 − 𝑃𝑃𝑙𝑙). For (B), we include only the exit of the transactions that 

occurred during the given hour, but for (C), we include only the entrance trips that exited 

during the hour following, i+1. 

𝑃𝑃𝑇𝑇𝑙𝑙𝑙𝑙 = 𝐺𝐺[𝐺𝐺𝑇𝑇2𝑤𝑤𝑤𝑤𝑤𝑤 + 𝐺𝐺𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + 𝐺𝐺𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒] 

Where,  
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𝐺𝐺𝑇𝑇2𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑇𝑇𝑖𝑖𝑙𝑙 ∗ 2 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑃𝑃𝑙𝑙 

𝐺𝐺𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑖𝑖𝑖𝑖 ∗ 1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ (1 − 𝑃𝑃𝑙𝑙) 

𝐺𝐺𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑇𝑇𝑖𝑖+1,𝑙𝑙 ∗ 1 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∗ (1 − 𝑃𝑃𝑙𝑙). 
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